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CAVITATION IN LIQUID CRYOGENS 

IV - COMBINED CORRELATIONS FOR 

VENTURI, HYDROFOIL, OGIVES, AND PUMPS 

J. Hord 

1. SUMMARY 

This document is  the fourth and final volume to be issued on the 

resu l t s  of cavitation studies performed at the NBS. The f i r s t ,  second, 

and third volumes dealt with venturi ,  hydrofoil, and ogive experiments 

and extended the theory for  correlating developed cavitation data. This 

I 

I 
I 

final volume extends these experimental data  and correlat ive expres  - 

sions to the prediction of cavitating pump performance. 

It was emphasized in the previous repor t s  that cryogenic liquids 

require  l e s s  subcooling to  avoid cavitation; i. e. , l e s s  Net Posit ive 

Suction Head (NPSH) i s  required for  the cryogens- -liquid hydrogen and 

liquid nitrogen were  used in the NBS tests. 

Developed cavity data ,  consisting of p r e s s u r e  and tempera ture  

measurements  within fully developed hydrogen and nitrogen cavities,  

were  acquired f o r  a venturi, hydrofoil, and three scaled,  quar te r -ca l iber  

ogives. 

theory derived in  Volume I1 of this report  se r ies .  Maximum benefit, 

in correlat ion of these combined stationary-body data ,  is  obtained by 

using the new MTWO parameter .  

derived f r o m  two-phase flow considerations. 

p a r a m e t e r s  which sat isfactor i ly  cor related the individual venturi ,  

hydrofoil, and ogive data also adequately cor  related these combined 

data. 

to a var ie ty  of body geometries (two-dimensional and axisymmetr ic)  

that encompass internal  and external cavitating flows. 

These combined data a r e  correlated herein using the extended 

MTWO i s  a liquid phase velocity ratio 

It i s  significant that the 

Consequently, these correlating pa rame te r s  a r e  proven applicable 



The new and old correlat ing expressions a r e  extended herein to 

The old expressions were  modified to apply to  rotating machinery.  

account for  s ize  effects i n  pumps. 

the scaled ogives were  used. 

res t r ic ted  to  those conditions where pump geometry, flow coefficient 

and AH /AH 

rotative speed a r e  permitted to  vary .  

ing correlating expressions may  be used with much grea te r  latitude- - 
only AHc/AHnc must  be held constant. This is a significant extension 

of the state-of-the-art  and requires  development of an independent 

method for  estimating K 

The size-effect  data obtained with 

Previous pump prediction work has been 

a r e  held constant while fluid, fluid tempera ture  and 

This study indicates that exist- 
C nc 

of pumping equipment. 
c, min 

Suggestions for estimating K a r e  advanced here in .  All 

currently envisioned methods requi re  detailed knowledge of the pump 

geometry. 

p r e s s u r e  coefficient, K , to the calculated noncavitating p r e s s u r e  

coefficient, C a r e  needed to  evaluate these suggestions. 

c, min  

Compilation of data relating the experimental  cavitating 

c,  min V 

P’ 
Briefly, this study produced a simplified and p rec i se  technique 

for  computing B-factors.  

successful approach to predicting cavitation performance of pumps. 

Analysis of convective heat t ransfer  and mass f l u x  limiting p rocesses  

resulted in  improved correlative- predictive expressions applicable 

to  pump design and operation. Extensive developed-cavity data were  

acquired for stationary hydrodynamic bodies immersed  i n  a flowing 

cryogenic liquid. 

improved semi- empir ica l  cor re la t ive  expressions.  

were  extended to predict  cavitating pump Per formance .  NASA- LeRC 

liquid hydrogen pump data were  used to  demonstrate  the adequacy of 

this extension. 

performance of pumps can be significantly extended. 

The B-factor concept appears  to be the most  

These data were  sat isfactor i ly  cor re la ted  using the 

These expressions 

It was shown that the ability to  predict  cavitating 

The extension 



of semi-  empi r i ca l  correlat ing expressions f r o m  stationary-bodies to 

pumping machinery  was substantiated.  

effort  w e r e  d iscussed .  

Directions for future technical 

2 .  INTRODUCTION 

Cavitation is  usually categorized a s  gaseous o r  vaporous; in this 

study we a r e  concerned only with vaporous cavitation. Over the p a s t  

30 yea r s  much confusion i n  the cavitation l i t e ra ture  i s  attr ibutable to 

the fai lure  of authors  to c lear ly  recognize and/or categorize their  

cavitation data .  The presence  of dissolved gases ,  mine ra l s ,  and 

par t iculate  m a t t e r  adversely affects the cavitating performance of 

equipment and simultaneously complicates analysis  and data correlat ion.  

Al l  data t rea ted  in this r epor t  a r e  considered to be virtually f r e e  of 

these effects--  such a r e  the advantages of cryogenic t e s t  f luids.  

ous cavitation i s  the formation of a vapor phase within the bulks t ream 

of a flowing liquid, o r  at the interface between a flowing liquid and a 

solid sur face ,  caused by a reduction in  p r e s s u r e .  

Vapor- 

To design liquid handling equipment such a s  pumps and flow- 

m e t e r s ,  the designer  mus t  de te rmine  whether cavitation will occur  

and, i n  many cases ,  to what extent. Since the formation and collapse 

of vapor cavities a l t e r  flow pa t te rns ,  cavitation may reduce the effi- 

ciency of pumping machinery  [ 11, produce vibrations,  cause flow 

instabi l i t ies ,  and reduce the precis ion of flow measur ing  devices .  

Collapse of these  vapor cavities can a l so  cause ser ious  erosion 

damage [ Z ]  t o  pump blades,  f lowmeter vanes, e t c .  We usually attempt 

to  avoid cavitation but i t  i s  sometimes beneficial; therefore ,  i t  is 

des i rab le  to l ea rn  how to pred ic t  the cavitating per formance  of equip- 

ment .  

1 

The weight of rocket  vehicles can be reduced by designing 

Numbers i n  bracke ts  indicate references a t  the end of this r e p o r t .  
1 

3 



cavitating pumps to operate a t  higher rotative speeds and lower pro-  

pellant tank p res su res ;  i. e . ,  the pump is designed to swallow limited 

quantities of vapor with l i t t le degradation of performance.  

decrease  in pump size and weight, offered by higher rotative speeds,  

has  numerous industr ia l  and aerospace applications. 

The potential 

Pumps designed to pe r fo rm satisfactorily with controlled cavita- 

tion normally requi re  an inducer ups t ream of the main pump ro to r .  

The function of the inducer is  to increase  the fluid p r e s s u r e  enough to 

preclude cavitation in the following s tage.  

p a r t  of the pump rotor  o r  may be separately mounted on the pump shaft. 

Inducers pe rmi t  satisfactory operation of the succeeding pump machinery 

while appreciable cavitation i s  occurr ing on the suction sur faces  of 

the inducer blades.  Thus, net positive suction head (NPSH) require-  

ments  for the pump assembly a r e  lowered considerably with l i t t le 

sacr i f ice  in pump performance.  

Inducers may  be an integral  

It is difficult to predict  the NPSH required for the sat isfactory 

performance of cavitating equipment. NPSH requirements  a r e  de te r -  

mined by the complex and combined effects of fluid proper t ies ,  pump 

geometry, pump operating point, and heat  and mass t ransfer .  This 

topic i s  t reated in detail  herein.  The noncavitating performance of 

hydraulic equipment may be predicted f r o m  established s imilar i ty  laws 

but eavitating performance is  much m o r e  difficult to  predict  f rom 

fluid-to-fluid. Recent advances in  this a r e a  have been made  by NASA- 

LeRC personnel [3-61 and others  [ 7 - 9 1 ,  but additional work is required 

to improve the cur ren t  technique for  predicting cavitating performance 

of equipment f r o m  fluid-to-fluid. The effects of fluid proper t ies  on the 

cavitation performance of equipment a r e  well recognized [ 1 0 -  191 and 

have been t reated in considerable detai l  in previous repor t s  [ 20-  231. 

4 



A m o r e  genera l  predictive technique that includes the effects of equip- 

ment  geometry and s ize  in  addition to fluid proper t ies  is sorely needed, 

This r epor t  outlines init ial  effor ts  in this direction and clear ly  shows 

that m o r e  knowledge i s  needed to extend our predictive capability to 

equipment design. Predict ing cavitating performance for  a specific 

fluid-pump combination using test data f r o m  a different fluid-pump 

combination is our ult imate goal. 

NASA has  undertaken a program [ 13 to determine the cavitation 

cha rac t e r i s t i c  s of various hydrodynamic bodies and the thermodynamic 

behavior of different fluids 

t e r i a  to aid in  the prediction of cavitating pump perfarmance.  

study descr ibed here in  was conducted in  support  of this program. 

in  an effort to  obtain improved design c r i -  

The 

Liquid hydrogen and liquid nitrogen were  chosen a s  tes t  fluids 

(1) the ult imate goal of this for  this study fo r  the following reasons: 

p r o g r a m  i s  to acquire  sufficient knowledge to pe rmi t  intelligent design 

of pumps for  near-boiling l iquids,  and (2 )  predictive analyses  indicated 

[ l]  that the physical p roper t ies  of hydrogen and nitrogen make them 

par t icu lar ly  des i rab le  t e s t  fluids. 

(1) to determine experimentally the flow and thermodynamic conditions 

required to induce desinent ( o r  incipient) and developed cavitation on 

various hydrodynamic bodies,  ( 2 )  to improve existing correlat ive 

expressions f o r  the prediction of cavitating performance of hydraulic 

equipment, and ( 3 )  to es tabl ish,  if possible,  a technique for  predicting 

the fluid-handling capability of different cavitating equipment using 

different fluids, 

plished and the third i tem,  though ambitious, has  been significantly 

The objectives of this study were  

The f i r s t  two objectives have been effectively accom- 

5 



advanced. 

s ta te -  of- the- a r t  and m o r e  experimental pump data a r e  needed to f u l l y  

evaluate p rogres s  on the las t  objective. 

The second and third objectives a r e  extensions of the 

Due to the bulk of the subject mat ter ,  reader  famil iar i ty  with the 

f i rs t  t h ree  volumes of this r epor t  s e r i e s  i s  necessary  and i s  assumed 

throughout this final volume. Definitions, terminology, e t c . ,  a r e  con- 

s i s ten t  throughout this repor t  s e r i e s .  Although desinent and detTeloped 

cavity data were  acquired i n  the stationary-body t e s t s ,  only the developed 

cavity data a r e  of i n t e re s t  i n  this  final volume. 

This repor t  summar izes  the work performed on five hydrodynamic 

It a l s o  documents the bodies with th ree  different geometries ( shapes) .  

analyt ical  and cor re la t ive  work performed a t  NBS on the experimental  

pump data [ 4 , 6 ]  generated by NASA-LeRC personnel.  

re la t ive effor ts  [ 3-61 and those reported herein indicate that r e su l t s  

obtained f r o m  stationary-body studies a r e  direct ly  applicable to  the 

correlat ion and prediction of cavitating pump performance.  Cavita- 

tion data for the hydrodynamic bodies (ventur i ,  hydrofoil, and ogives) ,  

apparatus  detai ls ,  t e s t  procedures ,  e tc . ,  were  reported in Volumes I, 

11, and 111 of this r epor t  s e r i e s  [20 -221 .  

contained data correlat ion efforts for  each  individual body shape. 

Previous co r -  

These th ree  volumes a l so  

A s imi la r i ty  equation, based upon the B-factor concept of Stahl 

and Stepanoff [ 111, h a s  been developed [ 191 for  correlat ing cavitation 

data fo r  a par t icu lar  t e s t  i t e m  f rom fluid-to-fluid; this  correlation is  

a l s o  useful i n  extending the velocity and tempera ture  range of data for 

any given fluid. Thermal  boundary layer  considerations and two-phase 

6 



m a s s  flux limiting concepts were used [21]  to improve this correlati1,e 

expression.  

and has  proven to be a valuable correlating p a r a m e t e r  for our venturi ,  

hydrofoil [21], and ogive [22] data. The MTWO p a r a m e t e r  i s  the rat io  

of v / V  where V i s  proportional to the two-phase liquid-vapor sonic 

velocity a c r o s s  the cavity in te r face ,  see re ference  [ Z l ] .  The co r re l a -  

tive express ions  [21] developed in  the course of this study a r e  used to 

co r re l a t e  the combined experimental  data for  the ogives, hydrofoil, 

and venturi. 

dictive equations f o r  pumps and a r e  applied to the NASA-LeRC pump 

data. 

A new correlat ing pa rame te r ,  MTWO, was developed 1211 

0 4 ,  c 

i n  tu rn ,  these r e su l t s  a r e  used to develop cor re la t ive /pre-  

, 
I 

These generalized equations account f o r  changes in  pump size,  

1 geometry,  flow coefficient and rotative speed, and for  changes in fluid 

pumping equipment was previously res t r ic ted  [4-61 to changes in  pump 

and fluid temperature .  Predict ion of the cavitating per formance  of 

1 

rotative speed, fluid, and fluid temperature.  More experimental  pump 

data  a r e  needed to fully evaluate the new general ized cor re la t ive /predic t ive  

e qu a ti on s . 
An improved method of predicting the cavitating per formance  of 

This  improved method i s  an pumping equipment i s  presented herein.  

extension of previous correlat ive efforts [ 3-61. 

3-  EXPERIMENTAL EQUIPMENT, INSTRUMENTATION, AND 

TEST PROCEDURES 

The experimental  facil i ty,  inst  rumentation, e r r o r  s ta tements ,  

visual  and photographic a ids ,  and t e s t  procedures  used i n  this study 

were  fully descr ibed i n  the f i r s t  volume [ 2 0 ]  of this repor t  se r ies .  

additional e r r o r  s ta tement ,  concerning uncertainty in  p r e s s u r e  measu re -  

m e n t  for  nitrogen tes t  fluid, was needed and given in  section 5- 2 of 

One 



Volume I1 [21 ] .  

tunnel configuration were  given in the respect ive repor t s  for the 

ventur i  [ 201, hydrofoil [ 211, and ogives [22]. Each body- tunnel combina- 

tion was located between the supply and rece iver  dewars  of a blowdown 

flow system a s  previously descr ibed [20].  

Geometr ic  and construction details  for  each body- 

Briefly, the objective of this experimental  p rog ram was to  obtain 

and analyze desinent and developed cavitation data for various hydro- 

dynamic bodies i m m e r s e d  in  flowing cryogenic fluids.  

menta l  data, combined with an analytical  study, was intended to advance 

existing knowledge of the cavitating per formance  of equipment. Informa- 

tion concerning model s ize ,  geometry,  fluid, fluid velocity, and t emper -  

a tu re  is  p rerequis i te  to the improvement  o r  development of a general  

expression for  predicting the cavitation per formance  of hydraulic equip- 

men t .  Experimental  apparatus  consisted of supply and rece iver  dewars  

equipped to control  fluid s ta te  and fluid flow conditions. 

t e s t  sections (tunnels) and s t reaml ined  bodies were  si tuated between 

the dewars .  Desinent and developed cavitation data were  acquired a t  

various fluid t empera tu res  and velocit ies i n  liquid nitrogen and liquid 

hydrogen. 

and analyze the data--par t icular ly  the cavity shape data .  

data  recording was provided by a magnetic tape data-acquisit ion sys t em.  

A short  descr ipt ion of each  hydrodynamic body i s  given in the following 

p Aragraph. 

This experi-  

Instrumented 

Closed c i rcu i t  television and movie film w e r e  used to define 

High speed 

A t ransparent  plast ic  venturi  [20]  with a quarter-round stepped 

throa t  provided needed data  re la t ive to in te rna l  flow geometr ies .  Re- 

presentative data f o r  two-dimensional bodies were  acquired for a sub- 

merged hydrofoil [ 211 with cyl indrical  (half-cal iber)  leading edge. 

8 



The three  scaled,  quar te r -  cal iber ,  ogives [ 221 used in this experiment 

consisted of submerged cylindrical bodies with quarter-cal iber  rounded 

noses .  

of two. 

s ize  effects and external  flow over axisymmetric bodies. 

and ogives were  sting-mounted and housed in appropriate t ransparent  

plast ic  tunnels; therefore,  t e s t s  with these bodies permit ted us to  photo- 

graphically determine cavity shape a s  a function of body shape and flow 

conditions. 

in  the same space allocated for the plastic venturi  [20] in the experi-  

mental  apparatus .  

The d iameters  of these cylindrical bodies varied by a factor 

These ogive data supplied necessary information relative to 

The hydrofoil 

The hydrofoil and ogive t e s t  assembl ies  were  installed 

4. DATA ANALYSIS 

We seek to apply the resu l t s  of this experimental  and analytical 

investigation to the design and operation of liquid pumps. 

LeRC pump impel ler  and inducer data [4,6] were  chosen to evaluate 

our predictive expressions.  

mental  pump data a r e  correlated and discussed separately in this 

section. 

The NASA- 

Our data and the NASA- LeRC experi- 

4 . 1  Selection of Stationary-Body Data 

The data selected were  generated during the course  of this experi-  

mental  p rog ram.  

data were  used. 

a r e  well known and documented. 

All of the venturi [ Z O ] ,  hydrofoil [ 2 l ]  and ogive [ 2 2 ]  

Fluid propert ies  for nitrogen [24] and hydrogen [25]  

These property data a r e  considered 
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m o r e  accurate  than those for  water  [26 ]  and common ref r igerants  [27] 

Other  applicable published stationary-body data [ 3 ,  19, 281 were  not used 

because (1)  they were  not available in sufficient detai l  or  quantity, o r  

e l s e  ( 2 )  they were  acquired using t e s t  fluids having poorly defined fluid 

p rope r t i e s .  The need for  accura te  fluid proper ty  data cannot be over-  

emphasized, a s  sma l l  uncertaint ies  in proper ty  data can resu l t  i n  l a r g e  

uncertainties in calculated B-factor [23]- - a  vital  constituent of our 

correlat ive-  pred ic  tive exp r e s sions . 
4.2  Correlat ion of the NBS Stationary-Body Data 

Previous repor t s  [20-  221 have documented cor re la t ive  efforts for  

e a c h  body shape.  In this final volume the combined venturi-hydrofoil- 

ogive (VHO) data a r e  cor re la ted .  Knowledge of fluid propert ies ,  flow 

conditions, body geometry,  and cavity lengths a r e  requi red .  The 

visual  cavity lengths, a s  determined f r o m  movie film, were  used in a l l  

correlat ive data f i t s .  

P r e s s u r e  and tempera ture  prof i les  within fully developed cavi t ies  

w e r e  measured  and a r e  r e f e r r e d  to here in  a s  developed cavitation da ta .  

The bulkstream vapor p r e s s u r e  exceeds the measu red  cavity p r e s s u r e ;  

i t  a l so  exceeds the saturat ion p r e s s u r e  corresponding to the measured  

cavity tempera ture .  Therefore ,  the measu red  p r e s s u r e  depress ions  

and the p r e s s u r e  depress ions  corresponding to  the measured  t empera tu re  

depressions a r e  called " p r e s s u r e  depress ions .  ( I  Alternatively,  the 

p r e s s u r e  depression may be expressed  in t e r m s  of i t s  equivalent equili- 

b r ium " tempera ture  depress ion .  ' I  

within the developed cavities was determined f r o m  these d i rec t  m e a s u r e -  

ments  of p r e s s u r e s  and t empera tu res  within the vaporous cavities.  

developed on the hydrofoil [21] and ogives [ 2 2 ]  were  i n  stable thermo-  

dynamic equilibrium. 

The s ta te  of thermodynamic equilibrium 

Cavitie: 

Metastable vapor was found to exist  i n  the cent ra l  

10 



and aft regions of hydrogen cavities developed inside of the venturi [20]. 

section. 

data  were  presented  and thoroughly discussed i n  previous reports  

Prof i les  of measured p res su re  depression for  all  of the VHO 
I 

i 

Stable thermodynamic equilibrium prevailed near  the leading edge of 

the cavities for  all of the VHO data. Ear l ie r  analytical work [20,21] 

indicated that this thermodynamic condition was sufficient for  compati- 

bility of the0 ry and experiment. 

The VHO developed cavity data a re  correlated [20] by using the 

experimental  values of cavity pressure  and tempera ture  depressions. 

The p r e s s u r e  depression in  the cavitated region is determined by 

Hyd rodynami c 
Body 

- 

Venturi [2O] 

Hydrofoil r2 I ]  

Hydrofoil [2  13 

Ogive [22] 

Ogive [22] 

Tes t  
Fluid 

hydrogen 

hydrogen 

nitrogen 

hydrogen 

nitrogen 

Maximum P r e s s u r e  
Depression 

2 
15. 13 ps i  (10.44 N / c m  ) 

2 
15.76 p s i  (10. 87 N / c m  ) 

2 
10. 08 ps i  (6. 96 N /cm ) 

2 
13.77 ps i  (9. 50 N/cm ) 

12. 89 psi  (8. 89 N/cim') 
3 
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The correlative expressions,  developed in a previous report  [21], 

were  used to cor re la te  the developed cavity data f rom the VHO experi-  

ments. .The two correlat ive equations a r e  given as  follows: 

E5 B 

ref  0 ,  r e f  ref B 

E4 E5 B MTWO 

ref 
.e- 

ref 

Equation (4-1) i s  an improved and extended version [21] of the simplified 

correlative expression developed by Gelder, e t  ale [19]. Equation (4-2)  

was derived [ Z l ]  f r o m  basic  hea t  and m a s s  t ransfer  considerations i n  

Volume I1 of this repor t  se r ies .  

isentropic BFLASH theory 1231 and two leas t -  squares  data-fitting com- 

puter  programs [20], were used to cor re la te  the combined VHO data. 

These equations a r e  used to cor re la te  developed cavitation data in  simi- 

l a r  tes t  i t ems  

f r o m  fluid-to-fluid, 01  a t  another tempera ture  of the s a m e  fluid, when 

limited tes t  data f r o m  a single fluid a r e  available. 

herein to cor re la te  developed cavity data f rom one hydrodynamic body 

to another and to predict  cavitation performance f rom one pump to 

another.  

These expressions,  along with the 

and to predict  the cavitation performance of a tes t  i t e m  

They a r e  a l so  used 

F i r s t ,  we concentrate on the stationary-body data.  

Complete and detailed descr ipt ions of the correlat ive technique, 

computational s teps ,  and computer p rograms  a r e  given in reference [ZO]. 

The correlative procedure,  a s  previously descr ibed [20],  can be 

12 



followed direct ly  when using eq (4- 1 ) .  

st i tute MTWO for V in the computer program. Briefly, this correlati \ .e 

procedure ensu res  that the B values calculated f rom eq ( 4 - l ) ,  o r  eq ( 4 - 2 ) .  

and the BFLASH values [23] fo r  each data point a r e  a s  near ly  identical 

a s  possible; both B values a t  each data point a r e  evaluated f rom experi-  

mental  data and this correlat ive procedure produces the best  possible 

agreement  between the isentropic flashing theory [ 231 and the cor re la -  

tive expression--eq (4-1) or  eq (4-2) .  

menta l  data is obtained by selecting appropriate exponents for each of 

the correlat ive pa rame te r s  in the correlative expression--eq (4- 1 )  o r  

eq (4-2).  

in appropriate detail  in reference [20]. 

eq (4-2) were  derived to evaluate the suitability of MTWO a s  a cor re la t -  

ing pa rame te r  for the combined venturi, hydrofoil, and ogive data.  One 

should r eca l l  that the individual venturi, hydrofoil, and ogive data 

correlat ions were  significantly improved [22] by use of the MTWO 

paramete r ;  similar improvement was obtained with the combined VHO 

data.  

To use eq (4-  2 ) ,  simply sub-  

0 

This "best-fit" of the experi-  

The exponent selecting p rocess  is quite complex and is t reated 
' Exponents for eq (4- 1 )  and 

In eq (4-1) and eq (4-2)  the cavity lengths were  evaluated a t  the 

visually observed lengths.  

mental  data point by using T , the maximum measured cavity p r e s s u r e  

depression,  and the calculation method outlined in reference [ 231. The 

fluid physical p roper t ies  a r e  evaluated a t  P 

that MTWO is evaluated at the minimum measured cavity p r e s s u r e .  

The charac te r i s t ic  dimension, D ,  was taken as the contour radius for 

each hydrodynamic body because a l l  three body shapes possess  a constant 

radius  contour upon which the cavity originates. 

B is  computed for  each s e t  of exponents; the individual exponents may be 

BFLASH was obtained for  each experi-  

0 

and T with the exception 
0 0 

The standard deviation i n  

13 



held constant o r  be chosen by the computer .  

B factor i s  minimized in the computer p r o g r a m s  when one o r  more  of 

the exponents is selected by the computer;  the absolute minimum standard 

deviation i s  obtained when all of the exponents a r e  selected by the computer 

a s  in  this repor t .  

the standard deviation cannot be minimized and i s  m e r e l y  computed. 

The set of exponents that  produces minimum standard deviation in  B i s  

selected a s  the bes t  solution for  any par t icu lar  batch of data;  i .  e . ,  the 

standard deviation i s  a m e a s u r e  of the validity of the cor re la t ive  theory 

and of the isentropic-flashing theory,  as both a r e  evaluated f rom experi-  

mental  da ta ,  

The s tandard deviation in 

In those c a s e s  where the exponents a r e  held constant, 

Because MTWO proved to  be a valuable correlat ing pa rame te r  for  

the individual venturi, hydrofoil, and ogive data [22] ,  the combined VHO 

data  were  cor re la ted  with and without the MTWO paramete r  to fur ther  

evaluate i t s  influence. Correlat ion of the combined VHO data with eq  (4- l ) ,  

and then with eq (4-2) ,  provides  d i r ec t  evaluation of MTWO a s  a cor -  

relating pa rame te r -  - identical  comparisons were  p r i p a r e d  for  the indi- 

vidual venturi ,  hydrofoil, and ogive data  [ 221. 

the individual and combined cor re la t ive  r e su l t s  for  developed cavitation 

on all geometr ies  (bodies) tes ted in this  study, i .  e . ,  venturi ,  hydrofoil, 

and ogives. 

section of this r epor t .  

4 . 3  Discussion of the NBS Stationary-Body Data 

Table 4.  2 summar izes  

The resu l t s  given in  table 4 . 2  a r e  d iscussed  in the following 

Cavity visual appearance,  interpretat ion of data,  and graphical  

display of typical developed cavity da ta  w e r e  t r ea t ed  in detai l  in previous 

repor t s  [ZO-221. 

cor re la te  the combined data f o r  the VHO. 

In this f inal  volume we concentrate  on our efforts to 

In br ief ,  the p r e s s u r e  
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depressions obtained f r o m  the cavity temperature  measurements  were  

generally in good agreement  with those derived f r o m  the measured  

p res su res  for  the ogives and hydrofoil, i. e. , within the allowances of 

instrument e r r o r  the cavity vapor was in  stable thermodynamic equili- 

brium. 

stl;dy [20]. 

generally increase  with increasing cavity length, body s ize ,  fluid 

temperature,and velocity; however, the p r e s s u r e  depressions decrease  

with increasing velocity for  the two smal les t  ogives tested in liquid 

hydrogen. 

tes ts  [6] using liquid hydrogen. 

Evidence of metastable vapor was presented in  the venturi  

The VHO data  revealed that cavity p r e s s u r e  depressions 

Similar resu l t s  were obtained in  pump inducer performance 

These cavity pa rame te r  functional dependencies a r e  a lso ahown 

by tabulating the values of the exponents derived to f i t  the experi-  

mental data--see table 4. 2. 

sure  depression inc reases  with increasing T and B. Referring to 

line 4 of table 4. 2 we observe that B inc reases  with increasing V 
0 ,  

4 ,  and D for  the VHO data. Then, for these data,  the p r e s s u r e  depres-  

sion must  increase  with increasing T , V , G ,  and D. By inspecting 

the exponent data in table 4. 2 ,  s imi l a r  deductions may  be drawn for the 

various body-fluid combinations tested. 

In reference [23]  it i s  shown that the p r e s -  

0 

0 0  

4. 3. 1 Mathematical  Correlat ive Results 

Equations (4-1) and (4-2) were  fitted with numerical  exponents 

derived by forcing these equations to fi t  the venturi, hydrofoil, and 

ogive experimental  data. 

of this study [22]  and represent  extensions of the work of Gelder,  et al. 

[ 191. 

squares fitting technique and a digital computer;  the suitability of the 

various exponents to the experimental  data i s  indicated by the standard 

These equations were  derived in  the course 

The exponents given i n  table 4. 2 were  obtained with a l ea s t -  
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deviation i n  B-factor as  explained previously. The mean percent  dif- 

ference in  B-factor,  a s  defined in  table 4. 2, m a y  also be used to a s s e s s  

the perfection of the correlat ive data fit. 

the value of B ranges f r o m  2. 0 to 5. 0; i n  the hydrofoil experiments  the 

value of B ranges f rom 1.0 to 5. 0 fo r  both hydrogen and nitrogen; in 

the ogive data the value of B ranges from 0.7 to 2. 8 for  hydrogen and 

f r o m  0. 5 to 3.  0 for  nitrogen. 

In the hydrogen venturi  data 

The expressions used to correlate  the experimental  data  a r e  

given at the bottom of table 4. 2. 

derive the exponents can easily pick an extraneous value for  any of 

the exponents i f  there does not exist  significant variation in the co r -  

responding physical parameter .  

in  previous repor t s  [20-221 and will not be discussed here ;  however, i t  

i s  the lack of variation in  CY that explains why E l  tends toward a negative 

number in  line 5 of table 4. 2. In l ines 1, 2, and 3 of table 4. 2 the 

numerical  value of E l  is  s o  smal l  that the CY t e r m  could be ignored. 

The variation in  CY fo r  the hydrogen-nitrogen correlat ions was about 

2:l .  

f r igeran t  114 data correlated by Moore and Ruggeri [3], and therefore  the 

value fo r  E l  reported in line 9 of table 4 . 2  is  prefer red  when correlat ing 

with eq (4-1)* 

any hydrodynamic model o r  correlat ive expression, a r e  to be prefer red  

because of the g rea t e r  variation in  physical parameters .  

The mathematical  technique used to 

This point has  been elaborated upon 

There  was m o r e  than 400 percent  change in a in the hydrogen-re- 

It i s  apparent that the combined fluid correlations , for  

. In a l l  of our individual venturi, hydrofoil, and ogive data,  use of 

the v and o t e r m s  improved the correlations;  however, i t  i s  felt that 

u se  of these additional correlating parameters  i s  not justified 

they substantially improve the correlative fit. 

mater ia l ly  improved by the u s e  of a ;  therefore,  values for  E5 a r e  not 

unless 

None of the data were  
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included i n  table 4.2.  

some  of the combined fluid cor re la t ions  using eq (4-1)  ( s e e  values for 

E 4  i n  table 4. 2 ) .  Because the o t e r m  was of negligible value in  the 

cor re la t ive  f i t ,  even though i t  var ied by a factor  of three,  we must  

conclude that o is not an important  correlat ing pa rame te r  for the cryo-  

gens tested; however, i t  may yet  prove  to  be a valuable correlat ing 

pa rame te r  for other fluid combinations. 

correlat ing pa rame te r  for other  fluid combinations and i s  of considerable 

value for some  of the hydrogen-nitrogen combinations.  

the hydrogen- re f r igerant  114 data (line 9 of table 4 , 2 )  would m o s t  likely 

be improved by using one o r  both of these t e r m s .  

Similar ly ,  the v t e r m  was of value only for  

Also, v may be an excellent 

Correlat ion of 

Inspection of the f i r s t  four l ines of table 4 . 2  shows that E l  is 

negligible and E2, E3, and E6 a r e  relatively consistent for  the data 

correlated using eq (4-2) .  No  such consistency ex is t s  when cor re la t ing  

the data with eq  (4- I )  ( s ee  l ines  5 through 9 in table 4 .2 ) .  That eq (4-2) 

i s  quite super ior  to eq (4-1),  a s  a cor re la t ive  expression,  i s  readi ly  

shown by l ine-to-line comparison of the r e su l t s  given in table 4 . 2 .  

substantial  reduction in s tandard deviation i n  B-factor ( o r  mean percent  

difference in B-factor)  i s  achieved in  all c a s e s  where  eq (4-2) is  used- -  

compare l ines  1 and 5, 2 and 6 ,  3 and 7 ,  4 and 8 .  The use of MTWO is  

c l ea r ly  superior  to  the use  of V 

study of the data in table 4 . 2  shows that the numer ica l  values of E l ,  

E3,  

is d 

P 10 embodied in  the MTWO p a r a m e t e r .  The predominant influence 

of tl 

and E, 

pa rame te r  emphasizes  that m a s s  t r a n s f e r  plays an important  role  i n  

the cavitation p rocess .  

A 

a s  a cor re la t ing  p a r a m e t e r .  Careful  
0 

'6 a r e  reduced when eq (4-2)  is  used.  The effect of the CI t e r m  

ecause of the many thermophysical  and thermodynamic fluid 

r0 t e r m  must  a l s o  be responsible  for  the reductions i n  E3 

.ien eq (4-2) i s  used.  The impor tance  of MTWO a s  a correlat ing 
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I 

P e r u s a l  of the E6 data i n  l ines 3 and 4 reveals  that the size effect  

i s  m o r e  pronounced for  the scaled ogives than for  the combined VHO 

data. 1 Superficially, i t  appears  that the value of E6 in line 4 should be 

favored because it cor re la tes  data fo r  three different body shapes; 

however, each body shape has  constant-radius contours. 

i t  i s  not yet c lear  whether the VHO exponents (line 4) o r  the scaled ogive 

exponents (l ine 3 )  should be selected for  future use. 

exponents were  used  he rein tc CSI-I e late p u m p  data a11t-i produc =d nearly 

identical results.  

table 4 . 2  may be attributable to the small  scale  ra t io  (1.414:l) used in the 

refrigerant-114 tests [ 3 ] .  

t e s t  0. 24-inch and 0. 50-inch diameter  zero-caliber ogives. 

Consequently, 

Both se t s  of 

The near ly  negligible value of E6 given i n  line 9 of 

Billet [28] used water  and refrigerant-113 to 

He obtained 

values of E l  = 0.60, E2 = 0. 30, E3 = 0. 58, and E6 = -0. 25 for  these 

I t e s t s - - a s  derived f r o m  a formulation similar to eq (4-1). 

appears  that s ize  effects can vary  with equipment geometry. 

experimental  data represented in  l ines 3 and 4 a r e  far more  extensive,  

and the values of E6 a r e  much more  consistent f r o m  body-to-body than 

the e a r l i e r  work [3, 281; therefore,  the size effects indicated by l ines  3 

and 4 a r e  to be preferred.  

Thus, it 

The 

Excluding s ize  effects, line 9 represents  the maximum variation 

i n  correlat ing p a r a m e t e r s  when eq (4-1)  is used. Thus, E l ,  E2, and 

E3 f r o m  line 9 were  combined with E6 from line 8 ( o r  line 7 )  to produce 

an improved expression with the f o r m  of eq (4-1)  for  use in pump co r -  

relation work,  i. e . ,  E l  = 1.0, E2 = 0. 8, E3 = 0. 3 and E6 = 0. 6 in 

eq (4-1)* Alternatively, we could have used the exponent sets  f r o m  

l ines  7 o r  8 f o r  comparative correlations of pump data, The l a t t e r  

choices were  rejected because (1) the exponent s e t s  in l ines 7 and 8 

a r e  quite in fer ior  to those of l ines 3 and 4,and(2) the E l ,  E2, E3 
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values  in line 9 have been moderately successful  in  previous pump 

correlat ions [4-63. Equipping eq (4-1) with E l ,  E2, and E3 f r o m  

line 9 and with E6 f r o m  line 8 produces an improved cor re la t ive  expres-  

sion of the original simplified f o r m  [4]. This expression can then be 

compared with eq (4-2)--equipped with exponents a s  in l ines 3 o r  4 of 

table  4 .2-  - in  predicting cavitating pump per formance .  

Attempts were  made to  improve the VHO data cor re la t ion  (line 4 

of table 4 .2)  using new correlat ing p a r a m e t e r s .  

sidering (1) the r a t e  [ZO] a t  which a par t ic le  of liquid t r a v e r s e s  a sub- 

saturation p r e s s u r e  region in  cavitating equipment, and ( 2 )  the theoret ical  

hea t  and m a s s  t r ans fe r  p rocesses  outlined in  Volume I1 [ 211, s eve ra l  

potential correlat ing p a r a m e t e r s  may  be contrived. 

m a y  then be evaluated by substituting them one a t  a t ime into eq (4-2)  

and correlat ing the VHO data .  

place of the a ,  v ,  o r  o t e r m s  in eq (4-2) .  

resu l t s  i n  a reduction of s tandard deviation in B-factor,  the p a r a m e t e r  

could be retained for  future use .  

offered sufficient p romise  to  w a r r a n t  retention. 

Simultaneously con- 

Each new pa rame te r  

The new p a r a m e t e r  may be inser ted  in  

If u s e  of the pa rame te r  

None of the newly contrived p a r a m e t e r s  

- 7  

The p a r a m e t e r s  t r i ed  were  A, a/D, $ / A ,  K , K 
V 

V V V V V 

C / d ,  A C C V '/2g A ,  h 0 - h ,  (h 0 - h ) /  A ,  P P '  P 0 C 
c" /K p c , m i n ,  

V 

(h  - h )  V V 
[1 + ( 1  - c" )l/'],  h - h , NPSH, ( N P S H + h  - h ), A , D , 0 

0 0  V V A P 

FC , and F 

of this r epor t ) .  

radius  contours the A/D w constant for a l l  t h ree  geometr ies ;  therefore ,  

substitution of A fo r  D i n  eq (4-2) produces a lmost  identical  r e su l t s .  

It i s  felt that acould be an  important  p a r a m e t e r  in correlat ing other 

stationary-body data and in  cor re la t ing  pump data .  

(all symbols a r e  identified in  the nomenclature section B 
Because the three  body shapes evaluated have constant- 

In accordance with 
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the arguments  presented in  the dimensional analysis of Volume I1 [21], 

severa l  Dimensionless Numbers  were  also t r ied  a s  correlating pa rame-  

te rs .  

We Re Pr, Re and P e  were tr ied i n  eq (4-2). 

None of them improved the correlative fit for  the VHO da ta - -F r ,  

.e’ t’ D’ 

Variations in  K 

previously [22] discussed i n  detail; however, this topic is  so  pertinent 

to  the correlat ion of pump data  that it wil l  be summarized h e r e ,  

4. 3. 2 Influence of Body Shape, Fluid, and Size on K 
c, min 

f r o m  body- to- body and fluid- to- fluid we r e  c, min 

The ar i thmetic  mean value of the developed cavitation parameter ,  
- 

, does not vary  appreciably for  the venturi data presented i n  
c, min 

K 

table 4.2. This pa rame te r  was also relatively constant for the hydrofoil 

data [Zl]; this i s  an important result ,  because constant K 7 eq c, min 
(4-l), and the isentropic  flashing theory [23] a r e  used to predict  [4,5] 

I 

I the cavitating performance of a particular piece of equipment. The 
- 

is  different for different bodies cur ta i ls  the cur ren t  c, min 
fact  that K 

predictive techniques [4,5] to a particular piece of equipment;  i. e . ,  the 

geometry (shape) of the cavitating equipment mus t  be identical o r  simi- 

la r .  f o r  many cavitating 

bodies, would not remain constant--as with the venturi--for all  fluids, 

cavity lengths,  velocities, temperatures ,  etc. Then, i t  was neither 

surpr is ing that E 
K 

Actually, it was anticipated 1201 that E 
c,  min’ 

for  the hydrofoil varied slightly [ 2 l ]  nor  that 
c, min - 

varied appreciably with the ogive body-fluid combinations [22]. 
- c, min 

F o r  the ogive data, K var ied by a factor  of 1. 5 : l .  
c, min 

Also, K varied more  for the ogives and the hydrofoil than - c,  min 
f o r  the venturi;  K was within 7 percent of K 

c, min c ,  min 
for  the venturi  

and within 15 percent  f o r  the hydrofoil, 

a s  follows: 

with hydrogen and f r o m  0. 36 to 0. 63 with nitrogen, 2 )  0. 357-inch 

K for  the ogives varied c, min 
var ied f r o m  0. 33 to 0. 51 1 )  0. 210-inch ogive--K 

c,  min 
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ogive--K 

to 0. 7 1 with nitrogen, 3 )  0. 420-inch ogive--K 

to 0 . 7 1  wi th  hydrogen and f r o m  0.45 to 0. 63 with nitrogen. 

dzta, i t  is apparent that K 
c, min 

The 0.  24-inch diameter zero-cal iber  ogive data of Billet [28] 

water and refrigerant-1 13  
c, min 

0. 52). Also, significant variations in  K have been detected in 

pump impeller [4] and pump inducer [5,6] performance tests. 

for a specific piece of equipment K 

fluid and flow conditions, and K 

expected to vary with size. 

varied f rom 0. 50 to 0. 77 with hydrogen and f rom 0.43 c, min 
var ied f r o m  0. 5 3  c, min 

F r o m  these 

inc reases  with increasing ogive size. 

f o r  

(0. 32 to show s imi la r  variations in K 

c, min 
Then, 

can vary appreciably with 

for s imi la r  equipment can be 
c, min 

c ,  min 

An unsuccessful attempt was made to establish a functional 

dependency of K upon 4 ,  V , and T for  these stationary-body 

data. F o r  the venturi [ Z O ] ,  K i s  near ly  independent of 4 , ,  V , 

and T ~ The hydrofoil K 

and increases  very slightly with increasing T . Likewise, with the 

ogives, K i s  almost independent of t, and V 

increasing T . Billet obtained different resu l t s  for  zero-cal iber  

ogives [28]--K 

with increasing V and was near ly  independent of T . Consequently, 
0’ 0 

the behavior of K 
c, min 

p r io r  to testing. 

c, min 0 0 

c ,  min 0 

i s  near ly  independent of 4, and V 
0 0 c ,  min 

0 

and inc reases  with 
c, min 0 

0 

decreased with increasing 4 , ,  increased  slightly 
c, min 

fo r  different equipment i s  not current ly  predictable 

Where K does not vary appreciably, i t  i s  convenient to use  

for predictive purposes. W i t h  l a rge  variations in K a s  c, min c, min ’ 
c, min - 

K 

in our ogive data, this pract ice  will produce relatively crude predictive 

resu l t s ;  however, in pract ical  applications s imi la r  flow conditions can 

sometimes be selected [4-61 so that predictions can be made  a t  

identical values of K Data presented here in  shows that K - c , min’ c, min’ 
and consequently K var ies  widely with body o r  equipment 

c, min’ 
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geometry,  as does the p r e s s u r e  coefficient, C . Thus, i t  is quite 

obvious that prediction of cavitation performance,  from one piece of 

equipment to  another,  will r equ i r e  significant advances in the de te r -  

P 

mination of K as functions of body geometry,  fluid, body s i ze ,  
c, min  

4, Vo, and T , 
0 

A s  a pre l iminary  step,  we can supply, f r o m  this study and o thers ,  
- 

data  that relates K 

f ic ient  , C . The definitions of these two p a r a m e t e r s  a r e  near ly  identi- 
P - 

c a l ,  except that K 

cavitating flow and 

flow--also , C has  a negative numerical  value ( see  nomenclature) .  

Exper imenta l  data f r o m  this study and o thers  are  plotted on figure 4 .1 ;  

t o  the noncavitating minimum p r e s s u r e  coef- c,  min  V 

is  based upon minimum cavity p r e s s u r e  i n  c ,  min  

C 
V 

i s  based upon minimum p r e s s u r e  in noncavitating 
V P 

P 

- V 
and C a r e  not cor rec ted  for  blockage in the upper 

P - 
t K  c ,  min c, min’ K 

curves  on this plot .  

blockage and is plotted a s  (2 
of 

P - 
i n  wind tunnels, a corresponding value of K 

f igure 4 .1 .  It may  then be  possible to  apply the predictive techniques 

outlined in  the l a t e r  sections of this repor t  to  es t imate  cavitation p e r -  

formance  f r o m  one piece of equipment to another .  

4 . 3 . 3  Developed Cavity Shapes 

In the lower curve K has  been cor rec ted  for c ,  min 
. If a designer  can es t imate  values 

f r o m  idealized fluid flow solutions o r  f r o m  model  scale-up t e s t s  
V c,  rnin’m 
C 

can be picked from 
c ,  m i n  

One of the main  objectives of the hydrofoil and ogive experiments  

was  to  obtain cavity volume-thickness data i n  an  effort to  improve the 

cor re la t ive  theory.  

d i scussed  in  previous r epor t s  [21, 221 and a r e  briefly summar ized  he re .  

Cavity thickness  and volume increased  with increasing cavity length 

and w e r e  near ly  independent of V and T . The shapes of a l l  of the 

cavities were  adequately represented  over the front halves of the cavities 

by a s imple  algebraic  expression of the f o r m  6 

The hydrofoil and ogive cavity shape data were  fully 

0 0 

= C xp, where 6 and x 
V 0 V 
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a r e  in  mi l l ime te r s  and x cannot exceed t / 2 .  

sions [22]  for  the scaled-ogive cavity shapes were  reasonably consistent 

and a r e  approximated by b 

The mathematical  expres-  

0.75  xO.41 x 
V 

4 . 4  Selection of Pump Impeller and Inducer Data 

The NASA-LeRC [4, 61 impeller and inducer data using liquid 

hydrogen tes t  fluid were  used. 

were  rejected for failing to m e e t  one o r  more of the selection c r i t e r i a  

cited below. 

Other published data [8, 9, 12, 16, 181 

In o rde r  to  cor re la te  cavitation performance f rom pump- to-pump, 

we need prec ise  information about (1) the geometry of each pump, ( 2 )  

cavitation performance charac te r i s t ics  f o r  each fluid and each pump, (3) 

instrumentation uncertainties,  (4) pressure  depression vs B-factor 

charac te r i s t ics  for each fluid, and (5)  the uncertainties in fluid property 

data.  

sufficient importance to war ran t  separate discussion.  

Some of these selection c r i t e r i a  a re  interrelated,  but each i s  of 

1 )  Pump geometry: Geometrical  details of pumping equipment 

a r e  usually not published along with the pump performance data.  

may  be partially attributed to protection of p ropr ie ta ry  design informa- 

tion and partially to  the complexity and burden of accurately describing 

such equipment. The pump inlet  a r e a  and the impel ler  and inducer 

tip d i ame te r s  a r e  essent ia l  information while blade angle, blade tip 

solidity, blade configuration, e tc . ,  a r e  highly desirable  pa rame te r s  

for  future cor re la t ive  work. 

published by NASA [4,6,30-321 were  inadequate for some of the analysis 

performed herein-  - supplementary data were obtained by personal  corn- 

munication [ 331. Thorough documentation of pump geometry, including 

scaled drawings and photographs, will be necessary  in future work. 

The NASA-LeRC publications [6,  31,321 contain good examples of the 

required information. 

This 

Even the highly detailed geometrical  data 
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2 )  Cavitation performance charac te r i s t ics :  Typical performance 

data  a r e  normally given at res t r ic ted  o r  singular values of the flow 

coefficient @ . To cor re la te  cavitating pump performance f rom one 

pump to another requires  the use  of complete pump performance data. 

NPSH-AH curves at constant values of N, T , and @ simplify the cor -  

relative procedure. 

and then AHc f o r  a prescr ibed  value of $’. 

mately 0. 7 )  may be picked to provide the bes t  available NPSH data. 

Higher values of $ ’  require  more  prec ise  measurement  of NPSH and 

more  prec ise  determination of AH 
nc 

curves a r e  flatter at  higher values of $’--typical NPSH-AH curves a r e  

shown on figure 4. 2. 

(0. 97 o r  0. 98) which effectively amplify the uncertainties in measured  

NPSH and AH . Complete NPSH - AH data a r e  available for  the 

NASA-LeRC pump impel le rs  L4, 31,321 and inducers  [5,6,34-361. 

0 

F r o m  these data it i s  possible to determine AHnc 

Low values of $ ’  (approxi- 

because the slopes of the NPSH - AH 

Most published data use  very high values of $‘  

nc 

3) Instrumentation uncertainties:  The precis ion of pump per form-  

ance data is  frequently difficult to a s s e s s  because instrument  uncer -  

tainties a r e  not c lear ly  stated. Knowledge of the uncertainties in the 

measurement  of NPSH, AH, T N, and flow is required to pe r fo rm 

accurate  correlat ions o r  predictions. Per formance  data with cryogens 

o r  conventional liquids, such a s  water ,  require  ve ry  p rec i se  measu re -  

ment  of temperatures  and p res su res .  The steep slope of the saturation 

pressure- tempera ture  curve for  water signifies that  smal l  e r r o r s  in 

temperature  measurement  can introduce l a rge  e r r o r s  in NPSH. 

dictive work with water i s  fur ther  complicated because cold water  

exhibits low values of Ah ,and vaporous cavitation effects  a r e  some- 

t imes masked by gaseous cavitation. Thus, instrumentation require-  

ments [ 9 ]  for water correlat ions a r e  very exacting. 

knowledge that prec ise  thermometry  instruments  a r e  needed when cryo- 

genic tes t  fluids a r e  used.  

0’ 

P r e -  

V 

It i s  common 
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Figure 4. 2 Typical cavitation performance data [34] for 80. 6 O  helical 
inducer pumping liquid hydrogen ( N  = 30 000 rpm). 
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4) Ah v s  B-factor: The B-Ah charac te r i s t ics  of each fluid 
V V 

a r e  markedly different [23]. Ah va r i e s  a lmost  l inear ly  with B-factor  

for  water,  but Ah 

gens [23]. 

points near  room tempera ture ,  charac te r i s t ica l ly  exhibit relatively 

low values of Ah . In contrast ,  cryogenic fluids show relatively la rge  

values of Ah . 
accurate B - Ah data. 

V 

i s  a nonlinear function of B fo r  the common cryo-  
V 

Cold water  and other  conventional l iquids,  with boiling 

V 

Fluid proper t ies  must  be accurately known to produce 
V 

V 

5 )  Fluid property uncertaint ies :  Fluid proper ty  data a r e  simply 

inadequate fo r  most  conventional fluids - -par t icular ly  hydrocarbons 

[9,16,18] ; water  proper t ies  a r e  in  many respec ts  still marginal ly  

defined even though much effort  has  been expended in  this a r e a  [26,  

37, 381. A discontinuity in  the saturation temperature-entropy data 

for refrigerant-113 [27] does not encourage its use  a s  a t e s t  fluid. 

a resul t  of stringent aerospace and cryogenic industry demands,  thermo-  

physical p roper t ies  of mos t  pure  cryogenic fluids [24,25, 39-43] a r e  

bet ter  known. Because of par t ic le-physics  and aerospace  emphas is ,  

the t ranspor t  and thermodynamic proper t ies  of parahydrogen [43,44] 

a r e  probably the mos t  extensive and precise .  

[23] that smal l  uncertaint ies  in  fluid proper t ies  can r e su l t  i n  ve ry  l a rge  

uncertainties i n  the calculated B-factor. 

resu l t  in correspondingly l a rge  uncertaint ies  in  Ah 

correlat ive and predictive analyses. 

2 

As  

I t  was previously shown 

Large  uncertaint ies  in  B-factor 

and resu l t  in  crude 
V 

See communications by A. B. Bailey (p. 57), F. C. Gilman ( p .  58) 
2 

and M. Sutton (p. 63)  at  end of Chivers  [9] paper. 
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If we were  not attempting to correlate  data  f rom pump-to-pump, 

we could re lax  our  selection c r i t e r i a .  

pump and fluid a t  various inlet conditions o r  fo r  a given pump with 

different fluids is much  l e s s  difficult. 

selection c r i te r ion  is not applicable and the second and third c r i t e r i a  

a r e  relaxed somewhat because a single test apparatus i s  used, i .  e . ,  

the t e s t  procedures ,  data uncertainties, data analysis techniques, experi-  

menter  judgments, e tc . ,  should be reasonably consistent. The fourth 

and fifth selection c r i t e r i a  a r e  of vital importance in a l l  correlat ive work. 

Selected data f rom Saleman [16] and Spraker [ l S ]  were  previously c o r r e -  

lated [5] using the simplified expressions reproduced herein.  

data were  only suitable for  fluid-to-fluid correlations and NPSH re-  

quirements were  generally predicted within the estimated uncertainties 

of the experimental  NPSH data.  

within the combined uncertainties in  pump data and fluid propert ies  data .  

Correlating data for  a given 

In the la t te r  two cases ,  the f i r s t  

These 

1 

1 

The predictions a r e  undoubtedly well  

After  careful study of the NASA-LeRC pump data [4-6, 34-36] 

and discussion of these data with one of the NASA authors [33], addi- 

tional selection c r i t e r i a  were imposed. 

a )  Some of the low @ inducer data were rejected because of the 

'd ips '  and 'wiggles' i n  the $ - NPSH curves ( see  figure 4. 2) .  Such 

data  complicate the determination of AH and the NPSH f o r  pre-  

scr ibed values of $'. 

for  some of the higher @ data,the higher values of $ 'were  not used;  

i. e. , the uncertainty in  graphically evaluating NPSH for  a specific $ '  

i s  minimized a t  lower values of $'--again, r e f e r  to figure 4. 2. 

inducer data  were res t r ic ted  to values of $ '  = 0. 7. 

0. 8, and 0. 9 were  used for  the impel le r  data. 

nc 
Because of the difficulty i n  establishing $ 

nc 

All 

Values of $ '  = 0. 7 ,  
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b) All NPSH data were  selected s o  that there  was minimal possi- 

bility of the existence of vapor in the pump inlet  liquid, s ee  figure 4.  2 .  

c)  In the data reported by NASA-LeRC, i t  i s  implied that K c, min 

does not vary with T 

values of $'. In pump-to-pump correlat ions i t  i s  convenient for  K c, min 

to  be a function of but two pa rame te r s ,  @ and $'. Thus, i t  was imposed 

that K 

all values of T 

NASApump data met this c r i te r ion  except for the 78" inducer data  

[36]. 

that varied by 300 to 400 percent. It i s  felt  that this selection cr i ter ion 

reflects on the internal  consistency of the cavitation data for  each piece 

of pumping equipment; therefore ,  the performance data for  the 78" 

inducer were rejected. 

data  may possibly be attributable to the low cascade solidity (1. 856) 

of this inducer. 

and tends to counteract cavitation-induced oscillations -- see Jakobsen 1451. 

o r  N ,  but i s  a function of @ only at constant 
0 

constant (+ 20 percent)  for  fixed values of @ and $', a t  
c, min 

and N for  each impel le r  and each inducer. All  of the 
0 

The 78"  inducer data had variations in  calculated K c, min 

The apparent inconsistency in these 78" inducer 

A solidity 2 2. 0 to 2. 5 improves suction performance 

The pump impel le r  and inducer  data selected f r o m  the NASA 

publications [4-6, 34-36] a r e  l is ted in  table 4. 3. These data a r e  co r -  

related herein. Geometrical  details  of the NASA pump equipment a r e  

summarized in table 4.4 and photographs of the NASA pump impel le rs  

and inducers a r e  shown on figure 4. 3. 

4. 5 Correlation of Pump Impel ler  and Inducer Data 

After fully evaluating the NBS stationary-body data ,  i t  was 

decided that the following two equations should be used 

the NASA-LeRC hydrogen pump data:  

to cor re la te  

0. 8 

; (4-3)  
B 

ref 0 ,  ref ref 
B 

30 



m 
U 
G 
a, 

.rl 
k 
a, a x 
e, 

E 

l? 
5 a 
G 
e, 
M 
0 
k a 
b 

A 
u 
p: 
4 

4 z 

e, 

d: 
trl 

E 
0 
k w 
rd 
rd a 
a 
a, 

V 
a, 

a, 
v) 

c, 

c, 

4 

rr) 

d 
a, : 
I 3  

- 
3 

a 
I 
3 a 

- 

m m LL' m m m m m u \  m in Ln LP m m m in in c)  11 o G (2 a 
N N N N N  N N N N if J 3 3 3 -f .;f 3 3 \D .U G 9  9 
N N N N N N N N N N N N N N N N CV N N N N N N p\I . . . . . . . . . . . . . . . . . . . . . . . .  
c c 3 2 3 3 0'3 0 3 O'J 0 2 --I z c; -1 1 3  3 0 3 3 

C C C 0 0 0 C ' O  0 C C 0 C C2 (2 C C, C> C 0 C, C 0 C 
o' CP o\ m c o  00 r- r- r- o. G o'q, 00 03 r- r- r- 0'0 '  F 5 a> cc ........................ 
0 C C; 0 2 0 0 C 3 0 C C: 0 3 3 Ut<> 0 0 0 (3 0 0 C 

r - r - a ~ r - 9 r - r - ~ a 6 ~ ~ 3 n n ~ a ~ t - r c o r - r -  

0 0 0 c 0 0 c>c:  0 0 0 0 3 3 0 C) 3 0 c 0 0 2 c, c 
........................ 

N N N N N N N N N N N N N N N N N N N N N N N N  

0 c i> 0 c 0 c, C! c 
o' o' T co m cor- r- r- . . . . . . . . .  
c: a 3 0 c c> c I;. c 

r - a ) o ' r - a ) 0 ' r - m 0  

0 0 0 Dl2 a o a c  
. . . . . . . . .  

N N N N N N ~ N ~  

c 

i 
0 
C 
0 

9. 
Q 
ul 
W 
0 
0 
F 

- 

5 
-0 
W 
U 
I 
0 u 
W 
I 

Ln 

3 
v) 
Q, 
L 

W 

c - 

f 
Q, 

3 a 

0 u 
0 

-0 
W 
Ln 
3 

0 
0 
U 

W u 
C 
W 
L 
Q) 

W 
1. 

ul 
W 

0 
c 
W 

c 

E 

c 

c 

Y- 

c 

n 

* 

31 



V 
Iv ,  

w 
I -  
a -  
z 
W E  

-8- 

a z 
3 a 

a 3 a a a (3 N N a 
d a Q G a N Ln 0. u\ r- 
. . ........ 

4 r l d r l r - 4  A d  

0 c000000 0 0  
r - t - r - r - r - t - r - r - r - r  

0 0 0 0 0 0 . 3 3 3 0  
. . . . . . . . . .  

a 
LT 
W 
V 
3 a 
z 
c( 

C C  O C  C G C  0 O C C  C C C C 0 0  
r - r - r - r - r - r r - r - r - r - r r  r - r - r - r - r -  

c o o o o o o c ~ c ~ o c c  O G O C > ~  
. . . . . . . . . . . . . . . . .  

C 0 0 C 0 0 0 0 0 9 C' G 0 0 C 3 3 
C 0 0 0 G 0 0  C: G 0 C C C C, .3Q 

3 2  



m 
k 
a, 
0 
5 a c 
5 
.rl 

3 
m 
k 
a, 

a, 
d 
4 

.rl F 

u 
d 

1 J 
a, 

I 

z 

E 
V 

a 
.. 

.rl 
c, 
c, 
cd 

B 
5 

'do 

M 

4 

a 
k 
0 

a, a 
(d 

P 
c 
rd 

d 

.rl 

E 

E 

d 
u 

5 s 
Id 
c, 

6 
M c 
a, 
4 

a 
k 
0 

'do 
a, a 
rd 
P 
c 
cd 

d 

.rl 

E 

E 
E "  u . .  

k 

d 
4 

E 
E . .  

u 

rd 1 ,  II 5 

E 
II 

nu 

b 
I1 

CI n 

0 
.rl 
c, 
cd 
k 

a 
.rl + 
I 
0 
o 
I 
P 
5 c 
a, a 
cd 
P 
G 
rd 

4 

.rl 

E 

n 
d 

II 

\ 

I 
I 

33 



- a 
a, 

s 
0 
d 
0 u 

d 

c 

m 
k 
a, 
V 
I a 
c 
a 
c 
cd 
m 
k 
a, 
4 
d 
a, 

.d 

.r( 8 
z 
I 
P 
u 
!z 
Ll 
a, 

4 z 

2 
w 
O 
m 
d 
.rl 

c, 
(d 

a, a 
Id 
V 

.d 
k 
U 

d 

; 
; 

z 

0 

* 
4 
a, 

E-l 

N 

M 
s b n  
Q a ,  a 

c l o  

o v  m a ,  

h . m -  

0 

E 
V 

.. 
ffl 
m 
a, 
F: 
5 
s 

2 

.d 

a, a 
rd 

P 
3 IG 

M 
a, a .. 
ffl 
a, a 
(d 

S 
w 
O 
h w 
pc 
v 

c, 
d 
a, 
x 
a, 

(d 
k 
a, 
IG a 
k 

c, 

d 

.d 

d 

E 
V 

a 
.. 

.r( U 

c, 
rd 

B 
M c 
a, 

a 
k 
0 

d 

+ 
p" 

uU 

a, a 
Id 

I 1  

E 

5 
V .. 
M 
c 
a, 

rd 

rl 

4 

'3 
k 
a, 
V 
I a 
d 
H 

E 
E v  
V 

E 

G 
V 

0 
N 

Q,, 
a, 
0 
c 
rd 
k 
rd 
a, 
0 

a 
d 

.d 
c, 

4 
(d 

rd 
k 

a 
a, 
rd 

G 

c, 

d 

2 
d 
fd u 

.r( 

3 

2 

a, a 
Id 

0 

a, 
V 
c 
rd 
k 
(d 
a, 
0 

a 

U 

4 

.r( U 

+I 
0 
0 
.d c, 

2 

3 4  

Q 
(11 

r c 

I I I I  
I I I I  
CdP u - 0  



N 

h 
m 

4;c 
CnI 
4l- 
z w  
V 

3 5  



NASA 
C-67-423 

c) Helical Inducer A 

(B.6").  

C-69-977 

d) Helical Inducer B 
(a=  9.4"). 

NASA 
C-69-695 

e)  Helical Inducer C 
( B  = 12"). 

Figure 4. 3 (Concluded). 
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0. 51 0. 28  0.43 B 

ref 
B 

To show t rue  s ize  effect [ 2 2 ] ,  the C and D t e r m s  may be combined to 

f o r m  the dimensionless ratio,  t / D ,  as follows: 

(4-5) 

0. 28 0. 71 . (4-6)  
0. 51 - B = (e) 

ref 
B 

j 
t 

The L / D  ratio is  used in  a wide variety of geometr ic  scaling problems,  

and the t rue  ' s i ze  effect '  i s  indicated by the value of the exponent on the 

D t e r m ;  i. e. , for  the same C / D  ratio the s ize  effect i s  mathematically 

represented by (D/D ) o r  (D/Dref) 
0 ,  71 

in eqs (4-5)  and (4-6). 0. 9 
ref 

The f i r s t  three exponentiated t e rms  of eq (4-5) a r e  those used 

by Moore and Ruggeri [3-6]--the D t e r m  was derived f rom the NBS 

stationary-body data. 

nuity with the correlat ive/predict ive work of Moore and Ruggeri and to 

provide a comparison of eq (4-5)  and eq (4-6)  when used to cor re la te  

pump data. Equation (4-6) was far superior to the mathematical  f o r m  

given in eq (4-5) f o r  the correlation of stationary-body data;  therefore ,  

eq (4 -6 )  was expected to excel when correlating pump data with these 

two equations. 

Thus, eq (4-5) i s  used here in  to provide conti- 

The resu l t s  given herein confirmed this reasoning. 

To apply eq (4-5) o r  eq (4-6) to the correlation of pump data,  r 

we must  re la te  B to Ah 

of each pump. Thus, an additional mathematical  relationship i s  

required and obtained f rom definition of cavitation parameters .  F i r s t  

the cavitation pa rame te r  i s  defined [4] in t e r m s  of the minimum cavity 

p r e s s u r e  by the relation 

and then relate Ah to the NPSH requirements 
V V 
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V 
Ah 

c , min 
h - h  

0 = K  + 
v P g  

- - 
2 V 

v l2gc C 0 

C ,  min 
K 

0 

where K i s  the conventional cavitation pa rame te r  defined by 
V 

h - h  
0 V 

2 K =  
V v 0 128, 

(3-7)  

= K when Ah = 0 and by defini- It is  apparent f rom eq (4-7)  that K c, min 
V V 

tion we have replaced h i n  eq (4-8) with h in  eq  (4 -7 ) .  Next, 
v c ,  min 

we take the definition of 

2 
V 

0 NPSH = h -1- - - h e  
0 2gc V 

Combining ey (4-8)  and eq ( 4 - 9 ) ,  we ge t  

Kv =[($)NpsH] - 1 " 

Then eq ( 4 - 7 )  and eq (4-10) may  be combined to lor in  

2 
T T  

NPSH t- Ah 
V 

(1 -t K .,-in)+ ( V 

(4-9)  

(4-10) 

(4-11) 

Equation (4-11) indicates the relationship that mus t  exis t  between NPSH 

and the cavitating p r e s  s u r e  coefficient, K 

framework for  the second required mathematical  expression.  

rewrite eq (4-11) in  t e r m s  of pump p a r a m e t e r s  a s  

; it  a l so  provides the c ,  min  
We may  

( 4 - 1 2 )  
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where V = q5NDt. 

we obtain the des i r ed  expression 

Expressing e q  (4-12)  i n  germs of reference data,  
0 

(NPSH + Ah ) 2 
v . (4 -13)  

c, min  1 ( 1  tK 

(1 tK c,  m i n )  ref ((@::ire) (NPSH f Ah v) ref 

Equation (4-13)  may  now be paired with eq  (4-5) o r  eq  (4-6) to 

f o r m  the equation p a i r s  needed to correlate  the pump data. 

(4-5)  and eq  (4-13) constitute our first equation pa i r  

Equation 

( NPSH -t- Ah ) 2 
V - - 

(NPSH + Ah v ) ref 
c, min  ) ( 1  + K  

c,  min  ) ref (1 + K  

L (4- 14 )  

where D rep laces  the charac te r i s t ic  dimension D in  eq  (4-5) and 

t '  
V = @ N D  

t 

0 

Equations (4-14) differ from those formulated by Ruggeri  and 

Moore [3-61 only in the value of the exponent on the D t e r m  in the 

second equation. To a s s u r e  dynamic and geometr ic  s imilar i ty  of 

cavitating flow, eqs  (4-14) were  restr ic ted [3-61 to a single pump. 

Physical  reasoning [4] and venturi  t e s t s  [46] indicated that K c ,  min  

t 

could be expected to va ry  with @ for  any specific pump. 

pump experiments  [4-61 substantiated this idea. 

a change i n  flow incidence angle. Therefore ,  variation i n  q5 i s  analogous 

to  an actual change i n  blade geometry for  a specific pump and resu l t s  

Subsequent 

Variation in q5 causes  

t 
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in  a different K for  each value of 0. Because K was not 

predictable p r i o r  to testing, Moore and Ruggeri simplified eqs (4-14) 

by specifying that constant values of K 

predict cavitating performance of a given pump. 

to cavity volume and constant values of & / D  as will be discussed l a t e r  

in  this report. Holding K , @ , JI’,  and pump geometry constant ,  

w e  obtain the simplified equation pa i r  used with good success  by Moore 

alid Ruggeri [3-61: 

c, min c, min 

, 0 ,  and $ ’ b e  used to c, min 
Constant 4’ re lates  

t 

c ,  min 

( N P S H  + Ah ) 
(NPSH + Ah v ) ref 

V - - 

0. 8 B 

ref 
B 

(4-15) 

The third equation pa i r  is  obtained by using eq (4 -6 )  and 

eq (4-13): 

NPSH + Ah ) 
V 

( 1  + K  

NPSH + Ahv) ref ( + Kc,  min )ref  

0. 51 0. 71 
B MTWO 

ref 
B 

(4-16) 

Referring to eqs (4-16),  we note that the f i r s t  equation i s  

derived f r o m  basic definitions and i s  not res t r ic ted  to a singular 

pump geometry; therefore ,  the first equation of (4-16) may be extended 

to predict  cavitating performance f r o m  one pump to another i f  all of 

the parameters  in this equation are known. The next section of this 
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repor t  e laborates  on this topic. 

applicable to varying pump geometr ies ,  we mus t  satisfy ourselves  that 

the basic  cavity shapes and heat  and m a s s  t r ans fe r  phenomena do not 

vary  markedly f r o m  one pump to  another. 

i n  our stationary-body t e s t s  [22] and those f r o m  Rouse and McNown [29] 

indicate that  cavities formed on a wide variety of hydrodynamic bodies a r e  

generally parabolic. 

(4-16) a r e  remarkably  consistent for the various stationary-bodies tes ted  

in  this study ( s e e  table 4. 2 ) .  This consistency of exponent values indicates 

that  the heat  and m a s s  t r ans fe r  p rocesses  associated with cavitation 1211 

do not vary  appreciably for  these hydrodynamic bodies, 

that the second equation of (4-16) is equally applicable to varying pump 

geometr ies  provided that this equation i s  initially evaluated f r o m  exper i -  

mentaldata  where there  exis ts  significant variation in  body geometries.  

It is  felt  that this l a t t e r  c r i te r ion  is  m e t  by using the resu l t s  of the VHO 

data cor re la ted  herein.  

F o r  the second equation in (4-16) to be 

The cavity shape data  obtained 

Also, the exponent data for  the second equation i n  

Thus, it appears  

t 

Arguments s imi l a r  to  those presented above may be advanced i n  

favor of using eqs (4-14) to cor re la te  cavitating performance f r o m  pump 

to  pump; however,  the exponent data  for  the second equation of (4-14) 

a r e  re la t ively inconsistent fo r  different body geometr ies  ( s e e  table 4. 2 ) ,  

and these arguments  a r e  l e s s  convincing. 

equation p a i r s  (4-14) and (4-16) a r e  equally applicable. Equations (4-14) 

a r e  applied here in  (to specific pumps and to varying pump geometr ies )  to 

provide a comparison of proven predictive expressions with the improved 

expressions given in  eqs  (4-16). 

F o r  a specific pump geometry,  

Equations (4-14) and (4-16) were used to cor re la te  the NASA-LeRC 

pump data. 

4. 7 and a r e  discussed i n  detail  in  the following section of this report. 

Exact computational procedures  with numerical  examples a r e  i l lustrated 

for  eqs  (4-16) i n  appendix A. 

eqs (4 -15)  may  also be helpful tc the reader. 

The correlat ive resu l t s  a r e  summarized in  tables 4. 5 through 

The detailed i l lustrat ions [4] f o r  use of 
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F o r  pump des igners ,  it i s  instructive to demonstrate  the relation- 

ship between K 

F i r s t ,  we note that the noncavitating suction specific speed 

and the cavitating suction specific speed S . c ,  min C 

= ( N Q ~ ’ ~ )  / (NPSH) 3 /4  . (4-17) 
nc 

S 

By replacing NPSH in  eq (4-17) with (NPSH + Ah ) 

the t ransi t ion f r o m  K 

a s  we did in  making 
V 

in  eq (4-10)  to K i n  eq (4- 1 l ) ,  we obtain 
V c, min 

(4-18) 3 /4  sc = (NQ1/2) / (NPSH + Ah V ) 

Combining eq (4-11) and (4-18) and substituting Q = A V 

and A 

V = @ N D t ,  
0 0’ 0 2 

= (vDo  ) / 4  yields 
0 

The significance of holding $I , K and pump geometry constant 
c ,  min 

as in  the development of eqs  (4-15) is  now apparent--S 

constant. Holding S = constant implies  s imilar  suction performance 

which i s  prec ise ly  the optimum condition for application of eqs  (4-14) 

and (4-16). 

is  a l so  held 
C 

C 

If p re fe r r ed ,  we may now use eq (4-19) to  rewr i te  eq (4-13) in  

t e r m s  of S . Eliminating K in  combining these two equations 

produces 
C c, min 

(4-20) 
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Equation (4-20) may now be pa i red  with e q  (4-5) o r  eq  (4-6) to f o r m  

the desired correlat ive/predict ive express ions .  

will  produce mathematical  resu l t s  that a r e  identical  to  those obtained 

f rom eqs  (4-14) and (4-16), respect ively.  Again, a method of evaluating 

S ( o r  K 

to  varying pump geometr ies .  

These equation p a i r s  

) i s  needed in  o rde r  to  apply these predict ive express ions  
c ,  min c 

4.6 Discussion of Pump Impel ler  and Inducer Data 

Correlat ion of the NASA-LeRC pump data with eqs (4-14) and 

(4-16) r equ i r e s  K v s  @ data  for  each  pump. 
c :  min 

was calculated 
c ,  min K 

f o r  each value of @ and for each pump using eq (4-14) o r  eq (4-16) and 

the NASA- LeRC experimental  da ta .  The procedure for calculating 

and corresponding values of S f rom experimental  data is K 

descr ibed in  appendix A .  Calculated values of K and S a r e  

given in table 4 . 3 .  In prac t ice ,  K (or  S ) will be unknown p r i o r  

c ,  min C 

c ,  min  C 

c ,  min  C 

to  pump testing; therefore ,  u se  of eqs  (4-14) o r  (4-16) for predictive 

purposes will requi re  a n  independent method of es t imat ing K 

Potential  techniques for  determining K 

th i s  repor t .  

c ,  m i n '  
( o r  S ) a r e  suggested i n  

c ,  min  C 

Cavity lengths m a y  be calculated i f  cavity vapor volumes and 

charac te r i s t ic  dimensions of each pump a r e  known; however, we have 

insufficient knowledge concerning the extent of cavity vapor volumes 

within pump blade passages and mus t  take I /D 

and ( 4 - 1 6 ) .  

therefore ,  it is  considered valid for  homologous pumps but perhaps 

inaccurate for d i s s imi l a r  pumps.  

age,  pump head will d e c r e a s e  a s  cavi t ies  grow within the blade passages ;  

thus i ' m u s t  be functionally re la ted t o +  for  all pumps .  

= constant in eqs  (4- 14) 
t 

This constraint  i s  defensible only for  s imi l a r  cavity shapes;  

As a resu l t  of increased  vapor block- 

1 ' d e c r e a s e s  as  
V 

increases  and these t rends  lead us  to  suggest  a s imple  functional 
v 

relations hip 

9' 0: 1 - ) ! ' .  (4- 21 ) v 
I3ecause1' i s  mathematically re la ted to  & / D  we can a l so  a s s e r t  t h a t  

1 t 
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3 ) ’  i s  a function of &/D 

.c/ = f (C/Dt) and $ ‘  = f ( t / D t ) ,  may d i f f e r  f rom one pump to another;  

however, holding 41 ‘ =  constant s eems  sufficient to a s s u r e  that 

&/D 

a l so  have to be content with this constraint  for pump-to-pump cor -  

re la t ions,  even though we a r e  fully aware  that it may be inappropriate .  

Fortunately,  &/D 

(4-16) and thereby forgives many weaknesses of the imposed constraint .  

Obviously these functions, ‘Lf = f (it’), t ’  V 

V 

= constant for s imi l a r  cavity shapes i n  s i m i l a r  pumps. W e  will 
t 

i s  a weakly exponentiated t e r m  in eqs (4-14) and t 

The resu l t s  given in  table 4. 5 a r e  for the simplified and optimum 

condition where $’, @ , and K 

requi re  that the pump geometry be invariant because each pump was 

tes ted over  a different range of @Is. 

predict ions re la te  to identical  pump geometr ies  a s  witnessed by the 

numer ica l  en t r ies  along the horizontal  lines of table 4. 5. 

indicate the suitability of eqs  (4-14) and (4-16) for  predicting NPSH under 

the p re sc r ibed  conditions. All possible pa i r s  of experimental  data  points 

were  used  to es tabl ish re ference  data  for  each pump--two experimental  

t e s t  points are  required to es tabl ish reference da ta  ( s e e  appendix A ) - -  

and then each  se t  of reference data was used to calculate the mean 

percent  e r r o r  (MPE)  in  predicted NPSH. 

table 4. 5 a r e  the ar i thmetic  average of all possible  permutat ions of the 

available re ference  data. 

resu l t s  s i m i l a r  to those given in  table 4. 5 but with l e s s  s ta t is t ical  signifi- 

cance. 

shown i n  table 4. 5 were  m o s t  representative of the available data. 

a r e  invariant. These c r i t e r i a  a l so  
c, min 

Thus,  the reference data and 

These data  

The MPE values reported in  

Using a single set  of reference data  produces 

Due to  the scarc i ty  of constant @ data it was felt that the resu l t s  

The r e su l t s  given in  table 4. 5 indicate that eqs (4-14) and (4-16) 

a r e  quite adequate for correlat ing the impel ler  data but that eq (4- 1 6 )  excels 

i n  cor re la t ing  the inducer data .  

su l t s  a r e  given in the bottom right-hand corner  of this table.  

success  of the predict ive expressions i s  assessed  by calculating the 

overa l l  mean  percent  e r r o r  ( O M P E )  in predicted NPSH, 

The overall  correlat ive-predict ive r e -  

The overal l  
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(4-22) 

Under the prescr ibed  conditions, we could reasonably expect to predict  

NPSH within about i 8 percent  using eqs (4-16). 

Table 4. 6 l i s t s  the resu l t s  f o r  pump-to-pump predictions with 

I)' = constant; h e r e ,  appropriate blocks in  the table identify the reference 

and predicted pump geometr ies .  

and reference data f r o m  impel ler  A at $ ' =  0 . 7  produces MPE values of 

13.73, 5 .34,  9 .  55, and 1 0 . 7 0  in predict ing the cavitating performance of 

impel ler  A, impel ler  B, inducer A, and inducer B ,  respectively.  The 

cor re la t ive  equations producing the lowest MPE a r e  l is ted f i r s t  i n  each data 

block within table 4 . 6 .  

culated using the reference data identified in table 4 . 3 .  

data minimized the OMPE for  eqs (4-16) and produced near ly  optimum 

resu l t s  f o r  eqs (4- 14 ) .  Thus, the predictive r e su l t s  shown in table 4 . 6  

may  be considered the best  possible using eqs (4-16).  and under the mos t  

favorable conditions we might predict  N P S H  within about f 12 percent  

( s e e  OMPE for  eqs (4- 16) i n  table 4 .  6 ) .  

superior  was again demonstrated by a l s o  computing the OMPE for  all  

possible permutations of the available reference da ta .  The resu l tan t  

values of OMPE were  19.92 and 24.44 for  eqs (4-16) and (4-14),  respec-  

tively. Under the conditions prescr ibed  in  table 4 .6 ,  but using all  avail-  

able  reference data,  we could expect t o  predict  NPSH within about f 20 

percent using eqs (4- 16) .  

A s  an  example, the use of eqs (4-16) 

The values of MPE shown in  this table were  cal-  

These reference 

That eqs  (4-16) a r e  c lear ly  

It i s  interest ing that the values of OMPE obtained using eqs  (4-14) 

do not vary  much as  cor re la t ive  r e s t r a i n t s  a r e  relaxed in  going f r o m  

table 4. 5 to table 4. 6 (using cyclic permutation of reference data  the 

OMPE va r i e s  f r o m  23. 09 to 24. 44). Conversely,  the OMPE f o r  eqs 

(4-16)  i s  much lower when pump geometry i s  held constant as  in table 4. 5 

(using cyclic permutation of re ference  data  the OMPE va r i e s  f r o m  7. 56 

to 19. 9 2 ) .  Direct comparison of the OMPE values in  table 4. 5 with the 
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optimum values in table 4 . 6  is a l so  interesting--the trend exhibited by 

eqs (4- 16) s e e m s  the most  logical. 

In preparing the resu l t s  shown in tables 4 . 5  and 4 .6 ,  it  became 

apparent that eqs  (4- 16 )  dominantly produce the lowest and most  con- 

s is tent  values of OMPE for each se t  of reference da ta .  

e rence  data were  varied,  the individual values of MPE were  a l so  mos t  

consistent when eqs (4- 16) were  used. 

is  attr ibuted to use of the MTWO parameter  in  eqs (4- 16) .  

resu l t s  were  obtained for  the stationary-body data ( see  table 4 . 2 ) .  

These observations, exemplified by the resul ts  given in tables 4 .  5 and 

4.6,  c lear ly  demonstrate that eqs (4-16) should be used for a l l  future 

correlat ive and predictive work. 

A s  the ref-  

This improved consistency trend 

Similar 

A s  expected we obtain the bes t  correlative and predictive resul ts  

and pump geometry a r e  invariant;  however, the NPSH 
when $ I ,  '9 K c , m i n  
predictions a r e  surpr is ingly good when only $ i s  held constant. Care-  

ful study of the data in tables 4 .  5 and 4 .6  reveals  that there  i s  room for 

improvement in  the formulation of the predictive expressions.  

effort to  improve our predictive capabilities, severa l  ideas were  explored 

a s  explained in the following paragraphs.  

In an 

Pump designs [ 14,451 employ blade relative velocities to good 

advantage; therefore,  w was substituted for  V in formulating eqs (4-16)--  

no cor re la t ive  improvement was gained. Likewise, no improvement 

resul ted f r o m  substitution of blade tip chord length ( C  ) for D in  eqs 

(4-16).  

in  eqs (4- 16)  a l so  failed to improve the NPSH predictions.  

ginates a t  the tips of the main and splitter blades of the impel le rs .  These 

blades have different  radial  and axial  coordinates, and selection of appro- 

pr ia te  charac te r i s t ic  dimensions i s  complicated. The main blade tip dia- 

m e t e r s  were  selected and used herein,  but i t  i s  recognized that the p r imary  

t 0 

t t 
Substitution of the modified cascade tip solidity ( C  ) for f,/D s t  t 

Cavitation or i -  

1 

4 9  



and secondary spl i t ter  blades a l so  contribute to the overal l  cavitation 

pe rfo rrnance of equipment. 

Accordingly, other  charac te r i s t ic  impel le r  and inducer  dimensions 

were  formulated and substi tuted,  in  turn,  for  D i n  eqs  (4-14) and (4-16). 

m 3  
D DD’ ml’ 

tially substituted for  D - All of these D’s were  super ior  to D in  the 
t’ t 

impel ler- to- impel ler  correlat ions.  D consistently produced the 

lowest values of MPE a s  recorded in  table 4. 7 - -  identical re fe rence  

data  a re  used in tables 4. 6 and 4, 7 so  that the resu l t s  shown in  these 

two tables a r e  direct ly  comparable. was general ly  superior  in all 

other  correlat ions where the inducer  data were  involved, i. e. ,  in  inducer -  

to- impel ler ,  inducer- to- inducer ,  o r  impel ler- to- inducer  correlat ions.  

Because the l a t t e r  groups comprise  the bulk of the pump data ,  D p r o -  

vided the bes t  overal l  predictions;  i. e., D produced the lowest values 

of OMPE. 

D i s  suggested. Better cor re la t ive  resu l t s  might possibly be obtained 

by selection of some other  charac te r i s t ic  impel le r  dimension. 

t 
and D were  calculated ( s e e  table 4. 8 ) and sequen- 

m2’ 
D 

m2 

D t 

t 

t 
F o r  impel le r - to- impel le r  correlat ions the future use  of 

m2 

Inducer suction per formance  i s  charac te r ized  [45J by the ra t io  
- 1  

8 , / a ,  where 0 qj - p / 2 )  and @ i s  the blade angle. As shown 

i n  section 5. 2 of this repor t ,8  / p  can a l so  be considered an important  

pa rame te r  i n  the analysis  of blade cavitation-- 8 = ( tan  @ - B ) .  For 

sma l l  values of @ and p these two p a r a m e t e r s ,  e,/@ and 0 2 / p ,  a r e  

analogous to the normalized @ p a r a m e t e r  ( @ / t a n  ( @ / 2 ) ) u s e d  by Moore 

and Meng [6]. 

data  at constant values of 8 / @  and/or  8 / p  were  disappointing--better 
1 2 

resul ts  were  obtained by unres t r ic ted  var ia t ion of @ a s  recorded in  

table 4. 6. 

= (tan 1 

-1 2 

2 

Attempts to co r re l a t e  the pump impel le r  and inducer  
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Efforts to improve the pump correlat ions by using different se t s  

of exponents f rom table 4. 2 were  also most ly  unsuccessful. 

(4-14) were equipped with the VHO exponent data f r o m  line 8 of table 4. 2 

and eqs (4-16) were evaluated using the ogive exponent data f r o m  line 3 

of table 4. 2. The la t te r  approach i s  only slightly infer ior  to the use of 

eqs  (4-16) a s  formulated, i. e. , when equipped with the VHO exponents 

f rom line 4 of table 4. 2. This resul t  was anticipated because the 

exponent data for  the ogives and VHO were reasonably consistent. 

Under the conditions specified in  table 4. 5, NPSH predictions were 

improved by equipping eqs (4-14) with the exponent data f rom line 8 

of table 4. 2. , etc. , with eqs (4-14) is  equivalent 

to stating that B % B o r  B constant when J I ' ,  @, K and pump 

geometry a r e  held constant. 

an OMPE of about f 10 percent  under table 4. 5 conditions; however, the 

OMPE under table 4. 6 conditions was drast ical ly  increased  by holding 

B constant. 

Equations 

0. 11 
The use  of (V ) 

0 

ref c, min 
Equations (4-14) with B = constant produced 

These findings a r e  significant because it appears  that the simplified 

predictive techniques--correlative res t ra in ts  specified in table 4. 5 and 

use  of eqs (4-14)-proposed by Moore and Ruggeri C3-51 can be improved 

by merely using the definition of K and holding B constant, c, min 

B =  B = constant J ref 

(NPSH + Ah 
V ) I (NPSH + Ah 

(NPSH + Ah 

B =  B = constant J ref 

(4-23) 

Much bet ter  resul ts  a r e  obtained in  a l l  ca ses  by the use  of eqs (4-16) .  
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c ,  min 5. POTENTIAL METHODS O F  PREDICTING K 

All of the pump NPSH predictions presented in  table 4. 6 a r e  

based on the p remise  that K (or S )  can be est imated without c, min 
the benefit of pump tes t  data fo r  each specific pump. 

suggests potential techniques for estimating K , min. 

5. 1 Estimation of K f rom C Data 

(Pump experiments a r e  not required)  

This section 

C 
V 

c, min P 

Recognizing that K will vary with IJJ' and may vary  with 0, 
c, min 

we will initially sett le for  rough est imates  of K ; therefore ,  values 
c. min - 7  

V 

at mean values of I#' a r e  sought. If the 'E( vs  c 
P c, min c, min 

of K 

can es t imate  K f r o m  figure 4. 1. This value of K may 

data for  our  stationary-bodies a r e  valid for pumping machinery,  we 
- 

c,  min c, min 
correspond to some finite but currently unknown mean  value of 6'. 
To u s e  the data on figure 4. 1, we must  f i r s t  determine C 

specific impel ler  o r  inducer blade. 

p resents  a challenge to the fluid dynamicist; however, a body of informa- 

tion [47-511 exis ts  for  these ideal fluid flow calculations. 

smal l  flow incidence angles,  values of C 

convenient compilation of air foil data  [52,53] . 
angles and/or  the requirement for  more prec ise  values of C 

the use  of computerized numerical  solutions to account for  the variation 

in c with changing 0 .  Once C i s  obtained, f igure 4. 1 can be used to 

V 

for  each 

The la t te r  i s  a complex task and 
P 

For  very 
V 

may  be est imated f r o m  any 
P 

L a r g e r  flow incidence 
V 

require 
P 

V V 

P P 
Considerable work i s  required to t e s t  the validity of this c ,  min' get K 

approach, but i t  appears  that the effort would be justified. 
- 

Another simple approach for  estimating K c, min can be deduced 

f r o m  a rule of thumb suggested by Jakobsen [45]. He suggests that the 

53  



3 
conventional cavitation number,  K , can be estimated f rom 

V 

l + K  = 
V 

(5-1)  

To maintain consistency with our  predictive formulations,  we automa- 

tically replace K with K and there  resu l t s  
V c ,  min 

c, min 1 +K ( 5 - 2 )  

This simple rule of thumb works exceptionally well for the NBS 
V 

stationary-body data. 
P -  

on figure 4. 1, the reader  can readily ver i fy  that values of K 

a r e  approximated r a the r  well. 

fa i l s  to reproduce Billet s data a s  recorded on figure 4 . 1 .  The C for  
P 

Bi?lst 's  zero-caliber ogive data i s  an experimental  value taken f r o m  

Rouse and McNown [ 2 9 ] .  

caliber ogive is  infinite; therefore ,  any deviation f rom a t rue zero-  

caliber will lower the value of C 

minute cavity formations o r  manufacturing imprecisions.  

r ea l  fluids a r e  a lso incapable of infinite accelerat ions around sharp  

corners.  Thus, the t rue  value of C for  zero-cal iber  ogives may well 
P 

be higher than 0. 64. 

Using eq (5-2) and the values of C tabulated 

c, min 
It i s  not at  all surpr is ing that eq (5 -2 )  

V 

V 

The theoretical  value of C for  a zero-  
P 

V . Such deviations may resul t  f rom 

Of course,  
P 

V 

I t  may be wiser  to use  eq ( 5 - 2 )  and the experi-  
" 

mental value o f K  

cylinders. Performing this a lgebra,  we obtain 

f rom Billet to es t imate  C for  h i s  blunt-body 

c = 1.40 for  
c, min P v  

P 

V 
K and C may  also be written [45] in t e r m s  of w ra ther  than V . 3 

t 0 V P 
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C 

4 V 
zero-cal iber  ogives-- a tenable value when extrapolating the C data 

of Rouse and McNown [29]. 
P 

Again, the validity of eq (5-2)  should be tested by application to 
V 

pumping machinery. 

may  supply sufficiently accurate  values of K cy  min --again, a t  a yet to 

to be determined mean value of 4’. 

Once C i s  obtained fo r  each value of $, eq (5 -2 )  
P 

V 
5 . 2  Estimation of K f r o m  C Data (Compilations of ex- 

c,  min P 
per imental  K data fo r  s imilar  pumps required) c, min  

If the foregoing approaches fail to produce reliable values of 

for  pumping equipment, it may be necessa ry  to compile K 

vs  $I data for  various classes  ( famil ies)  of pumps. 
b c, min cy  min 

K 

vs  r$ and C 

compilations of experimental  and theoretical  data would pe rmi t  the 

development of functional relationships between K 

fo r  pumping equipment. 

data  needed. 

V 
Such 

P 

V 
and C 

P cy  min 
The following paragraphs outline the type of 

Moore and Meng [6] plotted K vs  $I for  inducers  A, By and 

These curves do not reveal 
cy min 

C--these data a r e  shown on figure 5. la. 

any obvious t rends with inducer geometry. 

fa i r ing angle, $ was normalized and the same data  replotted [6]--see 

figure 5. lb. Still, no geometr ic  trends a r e  apparent. If we replace 

To account for  blade 

with (K ) c y  min c y  min w 
? we obtain the resul ts  shown on figure 5. 2. K 

The original data now resemble a family of curves  with definite geo- 

m e t r i c  dependencies. Improvements in the K vs r$ data for  c y  min 
I impel le r  A can also be demonstrated by using (K ) . This 

cy  min w 
observation mere ly  suggests that (K 

to use  in compiling future experimental data. If (K ) i s  used ,  

) c,min w 
may  be a good pa rame te r  

c y  min w V V 

we should also replace C with(Cp) . P W 

4 
See p. 2 5  of reference [ 2 9 ] .  
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Figure 5. 3 i l lust rates  a typical inducer blade with the inlet 

velocity triangle constructed at the blade tip. 

f igure frequently in that which follows, and (C ) 
only to the suction surface of the leading edge of the impel ler  o r  inducer 

blade at  the tip. (E3 
and i s  independent of the inlet  p r e s s u r e ,  temperature ,  velocity, and 

the fluid. The ( z  ) 
flow is  sufficiently turbulent (Re ,> 10 ) and the flow incidence angle i s  

constant. 

flow incidence var ies  with the flow coefficient @ . 
for  a specific piece of equipment may  be considered to vary only with @ .  

We shall  re fe r  to this 

is defined to apply 
V 

P W  

charac te r izes  each specific piece of equipment 
W 

of a hydrodynamic body i s  constant when the fluid 
P W  6 

In pumping equipment Re i s  normally high, but the angle of 
V 

Thus,  the (C ) 
P W  

(z2 must  be invariant i f  we expect identical cavitation charac-  
W 

te r i s t ics ,  s o  for a prescr ibed  geometry and + '  it i s  sufficient to hold 

@ constant. In correlating f rom one piece of equipment to another ,  the 

profiles for  the two bodies should a t  l ea s t  be s imi la r ,  even though 

the (C ) values may be different. The (E ) values may  differ 
P W  P W  

because of different tip contour, fairing angle, o r  cascade solidity at the 

tip. To  obtain s imi la r  (C ) pro f i l e s ,  we must  hold 0 o r  0 constant-- 

either angle may be used depending upon our choice of the blade suction 

surface or  p r e s s u r e  surface as a datum plane. 

c " d w  v 

P W  1 2 

Because the leading edges of mos t  impel le rs  and inducers  a r e  

rounded and then faired,  we may consider all of them a s  wedge-shaped 

bodies with cylindrical noses. 

would produce a different (C ) 
similar  f o r  the small blade angles under consideration and f o r  constant 

While each wedge angle (fairing angle) 
V 

, the (C ) profiles would be quite 
P W  P W  

. It appears that 0 is  a most  pertinent correlating pa rame te r  that  @2 2 
accounts for both flow coefficient ( @ )  and blade angle ( P ) .  

holding @ constant f o r  predictive purposes,we could hold 0 

Instead of 

constant. 
2 
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Holding 0 constant p re sc r ibes  specific,  

@ fo r  each pump. Attempts to cor re la te  

holding 8 constant were  disappointing. 

with no res t r ic t ions  on @ as reported in  

2 

2 

but not identical ,  values of 

the NASA-LeRC pump data 

Bet ter  resu l t s  were obtained 

table 4. 6. 

Referring to figure 5. 3 ,  l e t  u s  consider rotation of a constant 

velocity vector,  w around the blade tip. Note that w sin 8 is  

normal  to the p r e s s u r e  surface datum plane and w cos 0 

to this datum. Clockwise rotation of w 6 As 0 i nc reases  the liquid 

t’ t 2 
is  para l le l  t 2 

t ’  2 
impacts  on the suction surface,  reducing the per iphera l  velocity 

around the leading edge of the blade. 

on the suction surface;  therefore ,  h 

clockwise inc rease  in  0 

increase  0 in  a counterclockwise direct ion f r o m  the p r e s s u r e  surface 

datum, the liquid must  accelerate  to  flow around the leading edge of 

the blade. 

and (“2 

This produces higher p r e s s u r e s  
V V 

- h and (C ) 
0 PW 

a r e  lowered by 

Counterclockwise rotation of w : As we 2 ’  t 

2 

V 
P r e s s u r e  on the suction sur face  i s  lowered causing h 

of the suction surface to increase.  

- h 
0 V 

W 

Holding w constant and rotating i t  about the p r e s s u r e  sur face  
t 

datum plane requi res  a continuous change in  @; clockwise rotation of 

w resul ts  in  l a r g e r  values of r$ and counterclockwise rotation produces 

smal le r  values of @ . 
the suction surface,  and the value of (Cp> 

change with each value of @ for a par t icu lar  pump. 

t 
The location of the minimum p r e s s u r e  point on 

V 
for  the suction sur face ,  will 

W 

As @ i nc reases - -  

clockwise inc rease  of 0 (C de c r e  a s  e s, and a s  @ de c r e  a s  e S- -c oun te  r - 

PW 

2- w V 

2 PW 

vP) 
clockwise inc rease  of 0 -,<C ) increases .  Then (C ) i s  a function 

of @ for any par t icular  piece of equipment. 
V v d w  vs 0 / tan p and 

2 aw v s  @ o r  (c We can plot calculated (C 

experimental  pG, min ) vs  @ f o r  each pump. We can then determine 

) and a t  specific values of ,$ o r  8 / tan p for  each pump. (Kc, min w ( p)w 2 



V 
The procedure  for developing (K ) v s  ( C  ) data a r e  

c ,  min  w P W  
i l lus t ra ted  for  t h ree  helical  inducers  on figure 5 .4 .  

those shown in f igure 5 . 4 ~  a r e  required for each value of 4’ of in t e re s t .  

Extensive compilations of such data may make i t  possible to  der ive 

functional relationships between (K ) and ( C  ) for cer ta in  

Data s imi l a r  to  

V 

c, min w P W  
c la s ses  of pumps.  

o r  different designs may  then be possible .  

Interpolation o r  extrapolation of these data to new 

v 
If des i red ,  ( C  ) and (K ) can be expressed  in t e r m s  

PW c, min w 
of the relat ive velocity, w 

$I changes continuously with rad ia l  position along the blade leading 

edge for constant N,  V and 8 .  Under these conditions 0 is  minimum 

a t  the blade tip, 

a t  the blade tip; therefore ,  the tip radius was selected as the pump charac-  

t e r i s t i c  dimension in  this study. 

for  the mean effective blade rad ius .  m’ 

0’ V 
is  a maximum and thus cavitation should originate 

( cp)w 

5 . 3  Estimation of Pump K Using K Data for  Stationary- Bodies 
c, min  c ,  min 

(Pump experiments  a r e  not required)  

V 
C 

P 
The 

v s  This  method of estimating K i s  re la ted  to the E c, min c, min  
approach outlined in  subsection 5. 1 but is considerably m o r e  complex. 

following discussion was postponed until now so that the reader  

could benefit f r o m  the foregoing arguments and thus avoid confusion. 

On f igure 4. 1 the NBS stationary-body data a r e  adequately 

represented  by 

V 

(zc,*)m = O * 3 0 C  P ( 5 - 3 )  
V 

Due to  the uncertainty in  C 

were  not used  in  determining the slope of this line. 

for  zero-caliber ogives Bil le t ’s  [28) data 
P 

If the Billet 
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V 
data a r e  forced  to fit this s t ra ight  l ine,  we obtain C = 1. 26 and 

n kJ 
= 1, 20 f o r  his zero-ca l iber  ogives. 

C’ 

Using the a r e a  correct ion 
(“P) c0 

factor, F eq (5-3) can be replaced by the equivalent expression 

- 2 
F~ K c ,min  x 0.30 (GP). . (5-4)  

Equation (5-4) assumes  that F is about the s a m e  for  cavitating 
C 

and noncavitating flows. 

thin cavities developed on the stationary-bodies and for  average cavity 

lengths associated with . In pump blade passages ,  the cavity 

thickness is  frequently many t imes  the blade thickness;  therefore ,  the 

C cavity shape can dominate F for  cavitating pumps. Accordingly, F 

mus t  account for  the presence  of cavities when applied to pumps. 

This is  a fair approximation for the relatively 

c, min 

C 

In deriving the data represented by eq (5-4) it was noticed that 

constant for  all of the stationary-body data. Because 
c.  min  - 

f r o m  Billet i s  not in  doubt, h i s  data were  included with the 
c,  min K 

NBS data  to obtain 

3 -  

FCy K m 0. 3 7 4 .  c,  min (5-5)  

An expression of this  var ie ty  h a s  g rea t  appeal because F inherently 

accounts f o r  some of the detailed blade-plus-cavity geometry of each 

individual pump. This appeal exists even though the constant in  eq (5 -5 )  

may be expected to  va ry  f o r  different c lasses  of pumps and for different 

values of g’. 
we seek means  of computing F 

this computation, we will u se  the basic cascade configuration i l lustrated 

in  f igure 5. 5. 

cor  re la ted he re in  

application to  the impel lers .  

C 

Assuming the applicability of this expression to pumps, 

for  cavitating equipment. To simplify 
C 

This  simple configuration is  adequate for  the inducers  

but will require  some modifying assumptions for  
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To evaluate F we must  determine the blocked and unblocked 

a r e a s  of the blade passages a s  they appear to an observer  traveling 

with a par t ic le  of fluid along the velocity vector w 

a r e a  i s  taken a s  

C’ 

The unblocked 
t o  

( nDi Sin ’) ( Dt Dh) 

and the blocked a r e a  is  described by 

where B = (* Sin @ 
n 

By definition 

Dt - D 

($-%)( 2 h, ’ 

‘b) 

(5-6a) 

(5-6b) 

To evaluate 6 

ogive studies ( s e e  discussion in section 4. 3. 3 of this repor t ) ,  

we use  the expression f o r  cavity shapes derived f rom our 
V 

0. 7 5  
6 = 0.41 x 

V 
(5-8a) 

Converting 6 and x in  eq (5-8a) f rom mi l l imeters  to cent imeters ,  we 
V 

obtain 0.75 6 = 0.231 x 9 

v 
(5-8b) 

where x cannot exceed 6 / 2  . 
Equation (5-8b) must  be adjusted to account fo r  the effect of the 

modified cascade solidity on cavity thickness, 

foil and ogive tes t s  we observed that cavity thickness decreased almost  

l inearly with increasing solidity (blockage) a s  it i s  normally defined i n  

turbomachinery design. 

In our preliminary hydro- 

To adapt eq (5-8b) to the pump data, we note 
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that: the noncavitating blockage fac tor ,  FB, for  the stationary-bodies i s  

analogous to  t / e  for  the pumps.  F 

0 . 0 9 5 ,  near ly  the s a m e  value a s  t / a  for impel le r  B ( s e e  table 5 . 1 ) .  b 
Thus,  we will a s sume  that eq (5-8b) i s  applicable to the prediction of 

cavity shapes within the blades of impel le r  B and will  l inear ly  c o r r e c t  

th i s  equation for  solidity effects in the other  equipment. 

meaningful noncavitating solidity pa rame te r  a t  our  disposal  i s  the modified 

cascade solidity at the tip, 

fo r  impel ler  B and then eq (5-8b) may be rewri t ten in the generalized fo rm 

for  the quar te r -ca l iber  ogives was b B 

The mos t  

. F r o m  table 4 . 4  we obtain C = 1.683 C s t  s t  

1 .683 0 . 7 5  
6 V = 0.231 (q) (x) ( 5 -  9) 

Equations (5-7) and (5 -9 )  may now b e  used to  evaluate F for  
C 

all of the NASA-LeRC pumps. 

inser ted  into eq (5-  9) -  - the unblocked blade chord length, Cub, was used 

here in .  All of the geometry and flow p a r a m e t e r s  necessa ry  to  evaluate 

these two expressions a r e  contained in  tables  4 .4  and 5 .1 .  Most of 

the geometry data given in tables  4 . 4  and 5 . 1  a r e  readily calculable 

according to the i l lustrat ion given i n  figure 5 .  5; however, some  of the 

impel ler  data required measu remen t  of the equipment and/or re ference  

to  construction drawings.  

Any reasonable  value of x may be 

In table 5.1, the values of for  the impe l l e r s  a r e  not the t rue  m e a -  

su red  values but a r e  calculated a s  shown on f igure 5 . 5  and in the footnote 

of table 5 .1 .  

NASA cavitation film [30]. This film, for  a pump s imi l a r  to impel ler  B, 

revealed that vapor always fills the space  adjacent to  the suction surface 

of the impel ler  blades ( see  f igure  5 . 6 ) .  

simplicity of analysis ,  we a r e  effectively straightening the impel le r  

vanes to  conform to the i l lustrat ion in  f igure 5 . 5 .  

The calculated values w e r e  used af ter  careful  study of a 

F r o m  this observation and for 

F o r  these impel le rs  
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the cavity i s  assumed to have the additional thickness--measured f rom 

the theoret ical  straightened vane position- - a s  specified by eq (5 -  9 ) .  

Again, this concept is i l lustrated in figure 5 . 6 .  

Equations (5-5) ,  ( 5 - 7 ) ,  and (5-9)  were applied to the NASA-LeRC 

impel ler  and inducer data and the resul ts  a r e  presented in table 5 . 1 .  

The predicted values of 

mental  values obtained f r o m  our previous calculations. 

values of X 
in  the following paragraph.  F o r  simplicity, inlet blade tip dimensions 

were  used to evaluate the geometry parameters  in this two-dimensional 

cascade flow il lustration. 

(par t icular ly  for  the impel le rs )  and could be t reated to  account for var ia-  

tion in  blade height, curvature ,  thickness, e tc .  Also, mean effective 

a r e  remarkably close to the experi-  
c, min  

These predicted 

do not correspond to known values of $ ' a s  explained 
c, min 

In reali ty,  the flow is much more  complex 

1 . dimensions might be formulated to produce better resu l t s  in the simpli-  

fied analysis.  

cause so many possibil i t ies exist;  ari thmetic mean  values of blade thick- 

Only a modest  effort was expended in this direction be- 

ness ,  modified cascade solidity, $, etc. ,  were  t r ied and they produced 

much  higher values of K than those l isted in table 5 .1 .  Perhaps  c, min 
the init ial  choice of inlet blade tip dimensions was fortuitous because it 

i s  apparent that  prediction of K from eq (5-5)  is  highly sensit ive c, min 
to choice of physical  dimensions.  More detailed analysis is  needed to 

improve K predictions by this method. c,  min 

Possibly the major  deficiency of this approach i s  that we have - 
no idea  what value of $'  corresponds to our predicted K ; i. e. , 

we must  determine what head lo s s  is attributable to a cavity of half- 

length C 

each pump. Theoretically, K -+ I a s  $'-1. 0. Also, 
c ,  min 

S 4 S 

c, min 

. Obviously this head loss ,  and therefore $: will vary with 
ub - 

a s  $'-1. 0 . To pursue this idea,  we must  establish 
C nc  
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- 
relationships between K 

two potential methods exist  for  accomplishing this task- -both a r e  

described below. 

and $ '  f o r  each specific pump. At l ea s t  c, min 

This blade-plus -cavity approach m a y  be salvaged by performing 

These idealized flow calculations to evaluate the cavitating head l o s s .  

computations a r e  performed a t  constant N and Q for a pump of known 

geometry. 

length and a corresponding value of 

then computed by assuming that the cavity behaves like a solid body, i .  e . ,  

by assuming that the blades have the shape of blade-plus-cavity. 

l o s s  i s  converted to $ '  f o r  identification with i t s  companion K c ,  min 

Such computations are not simple,  but even rough es t imates  should 

be adequate to establish the needed relationship between predicted 

K 

lengths may be terminated when the des i red  $ ' i s  reached. 

responding cavity length i s  then used to evaluate K 

described. Next, E 
using eqs (4-16) and the method descr ibed herein. 

Cavity shape is  predicted by eq (5-9) for  an assumed cavity 

is  calculated. Head lo s s  i s  
c ,  min 

This head - 

- 
and f '. Computerized solutions based on incremented cavity 

The cor -  

a s  previously 

c, min 

- 
c, min 

i s  used to evaluate pump NPSH requirements  
c, min 

More experimental  pump data and analytical work a r e  required 

to confirm o r  invalidate this approach. 

A second method of linking K and Jr' requi res  experimentally 
c, min 

v e r i f i e d 4  vs Jr '  d a t a .  

(5-7),  and (5-5),we can calculate 6 , Fc, K 

assumed value of x; therefore ,  functional relationships between K c, min 

and+ may be derived for  each pump. 

establish the needed E 
blade flow visualization, is required to establish the < vs  $'function 

for  each c lass  of pumps. Thus, this method of evaluating Jr '  h a s  no 

appeal unless a simple and universal  correlat ion b e t w e e n q  and Jr' 
is  discovered. 

Knowing the pump geometry and using eqs (5-9) ,  
- V 

and+ for  each 
- V c ,  rnin V 

By r e l a t i n g 4  to $', we can 
V V 

vs $ '  data. Experimental  data,  with in t ra -  c, min 

V 

V 
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In eq  (4-21) we reasoned t h a t 4  a (1-6')  . We unsuccessfully 
V 

attempted to  re la te  K t o q  in our stationary-body tes ts .  K 

was found to be independent o f q  f o r  the venturi  and hydrofoil and was 
c, min V c, min 

- 7  

ccq -0.05 

mq -0.16 
weakly related for  the ogives (K ) . F r o m  Bil le t ' s  

data  [28 ] ,  i t  was deduced that K . Substituting C (1-6') 
c ,min  v 

c, min V 1 
f o r 4  , we may write 

V 

Z 
I 1  

K c, min  = c l  (T) , 
o r  

K c ,min  - - ((l i t$ef)z 

(Kc, min)  ref 
I 

( 5 - l o a )  

(5-  lob)  

where the body o r  pump g e o m e t r y i s  held constant.  

expression,values  of z were  computed for the impe l l e r s  and inducers.  

These values were  jus t  as inconsistent a s  those for  the stationary-bodies. 

To t e s t  this simple 

Thus, the assumption that K c c ' f  -' fa i ls  and eq (5- lob)  cannot 
c ,  min  V 

be used to t r ans fe r  K data f r o m  one JI' to another. 
c, min 

functions that r e l a t e +  and 6' a r e  current ly  dim. 

The prospec ts  of acquiring experimental  verification of un iversa l  

Nevertheless ,  this 
v 

method of coupling 6' and K i s  sufficiently obvious to justifv the c, min 
effor t  expended here in .  
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6. SUGGESTIONS FOR FUTURE WORK AND DATA COMPILATIONS 

This study has revealed a number of a r e a s  where future work 

is needed. 

e f fo r t  f rom the scientific community and pumping machinery special is ts .  

Each of the tasks  l isted below will  require  considerable 

Improve the accuracy and consistency of fluid thermophysical 

propert ies-  -par t icular ly  for conventional fluids such a s  water ,  

hydrocarbons, and the common ref r igerants .  

Launch a significant effort to  collect existing pump data (un- 

published and published), together with geometric details  of 

pumps, for  purposes  of correlat ion and to t e s t  correlat ive-  

predictive procedures  outlined in  this  report .  

Provide the type of data indicated in  this repor t  and provide 

the maximum in geometric detail  for a l l  future pump experimen- 

tation. 

possible quality and precis ion,  

Evaluate the potential methods of estimating K 

herein and establish C - K - C$ relationships with pump 

data compilations. 

Improve and simplify, i f  possible,  C calculations.  

P e r f o r m  additional stationary-body work because this study 

and previous work [ 3 ]  show the relevance of such work and 

its d i r ec t  applicability to the prediction of cavitating performance 

in rotating machinery.  

Finally, a s  a resul t  of additional knowledge and experience, 

improve the existing correlat ive expressions.  

Expend maximum effort to  obtain data of the highest 

out lin ed 
c, min V 

P c ,  min 

V 

P 



7.  CONCLUDING REMARKS 

The work performed in  the course of this study i s  documented 

i n  the four volumes of this report  s e r i e s  and may be succinctly sum- 

marized a s  follows: 

1 )  A simplified, more  prec ise  computation [23]  was devised 

for  the calculation of B-factors.  

is  based upon isentropic vaporization of liquid and clear ly  

demonstrates  that p rec i se  thermophysical p roper t ies  of 

fluids a r e  required for  improved future work. 

Convective heat t r ans fe r  and two-phase m a s s  flux limiting 

concepts were  used [21]  to extend and improve existing 

formulae for  correlat ing developed cavitation data .  These 

correlat ive expressions were  extended to the prediction of 

cavitating performance of pumps in this final volume ( I V ) .  

Extensive developed- cavity data were  acquired for th ree  

different hydrodynamic body shapes using liquid hydrogen 

and liquid nitrogen t e s t  fluids. These data were  obtained 

using two-dimensional and axisymmetric bodies and for  both 

in te rna l  [ZO] and external flows. 

fo r  the submerged axisymmetric bodies [22].  

The resu l t s  of work performed in i t ems  (1) and (2 )  were  used 

to cor re la te  the data obtained i n  i t e m  (3) .  

The liquid hydrogen pump data generated by NASA-LeRC 

were  analyzed and correlated using the resu l t s  obtained 

f r o m  i tems ( l ) ,  (2), ( 3 ) ,  and (4). Thus, the s ta te-of- the-ar t  

of predicting cavitating performance of pumping equipment 

was  significantly extended. 

This improved method 

2) 

3 )  

Size effects were  obtained 

4) 

5 )  
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6) The relevance (to pumps)  of analysis and experimentation 

with stationary bodies was strengthened; i .  e . ,  the 

correlat ive expressions derived for  stationary bodies 

appear  extendible to  rotating equipment. 

The effort expended in items (1) through (6 )  revealed 

cer ta in  technical areas where additional analysis and 

experimentation a re  needed- - these a r e a s  a r e  defined. 

7)  
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8. NOMENCLATURE 

adiabatic acoustic velocity of liquid, evaluated 

a t  the minimum cavity p r e s s u r e  

a 
t 

adiabatic acoustic velocity of vapor,  evaluated 

a t  the minimum cavity p r e s s u r e  

a 
V 

0 
A inlet  a r e a  of tes t  section (tunnel); may also be 

inlet  a r e a  i n  line-mounted pump impel le rs  o r  

pump inducers  

B ratio of vapor to liquid volume associated with 

the sustenance of a fixed cavity in  a liquid 

B derived f r o m  isentropic flashing theory (Ref. [ 2 3 ] )  - BFLASH - 

BFLASH 

chord length of inlet  blade a t  hub, see  table 4.4 
'h 

(n  = 0 , 1 . . . etc . ) :  constants o r  numerical  

coefficients in  various algebraic expressions 

- C - 
P 

noncavitating p r e s  sure  coefficient 

V 
C 

P 
p r e s s u r e  coefficient min imum non c avitating 

minimum nonc avitating 

based on inlet blade tip 

p r e s  su re  coefficient 

relative velocity 
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C 
p, 

s t  C 

Ct 

'ub 

D 

DD 

Dh 

D 

D 

h ,  PS 

h, s s  

ml 
D 

m2 
D 

D 
m 3  

V V 

value of C 

specific hea t  of liquid at constant p r e s s u r e ,  

evaluated a t  the tunnel (pump) inlet  (Po and T ) 

modified cascade solidity a t  tip of inlet  blade [ r C  /C 

note that this  solidity p a r a m e t e r  i s  equivalent to the 

conventional definition of cascade solidity divided by 

cos fl 

in  an infinite flow field [ s  F fC ) ]  
P C P  

0 

1; t ub 

chord length of inlet  blade a t  tip, s ee  table 4 . 4  

unblocked chord length of inlet  blade a t  tip, s e e  table 4 . 4  

cha rac t e r i s t i c  dimension of stationary-body o r  

pump equipment; taken a s  radius  of contour fo r  

stationary-bodies and a s  inlet  blade tip d iameter  

fo r  impe l l e r s  and inducers  

discharge (overa l l )  d iameter  of impel le r  

hub d iameter  of inlet  blade a t  the inlet  

hub d iameter  of p r i m a r y  sp l i t t e r  vanes on impe l l e r s  

hub d iameter  of secondary spl i t ter  vanes on 

impe l l e r s  

inlet  blade mean effective d iameter  
1 

for  impe l l e r s  o r  inducers  

imDeller mean effective d i ame te r  
'2 2 
t t ,ps 

n D  + n D  

4 n  

impel le r  mean effective d i ame te r  

4 n  
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m,ss 
D 

0 
D 

Dt 

D 

D 

t, PS 

t ,  s s  

FB 

FC 

c, min h 

- - 
0 

h 

- - 
V 

h 

mean effective diameter of pr imary spli t ter  

vanes [G {- h, PS 3 
mean effective diameter of secondarv splitter 

, I  

vanes 1 t ,  s s  h, s s  

tunnel inlet diameter for stationary-bodies o r  

inlet duct diameter for impellers and inducers 

tip diameter of inlet blade at  the inlet 

inlet tip diameter of primary splitter vanes on im- 
peller s 
inlet tip diameter of secondary spli t ter  vanes on 
imp e lle r s 
a r e a  blockage factor, the fraction of c ross  sectional 

flow a rea  occupied by the stationary-body o r  by the 

pump blade-plus -cavity 

a rea  correction factor, the square of the ratio of 

blocked cross  sectional flow area to unblocked (inlet) 

c ros s  sectional flow area E (1 - [ . F B ) 2 ]  

Froude number [s Vo/J-"] ' 

conversion factor i n  Newton's law of motion 

(gravitational acceleration) 

minimum static head in cavitated region corresponding 

to minimum absolute static pressure  within the cavity 

tunnel o r  pump inlet static head corresponding to 

absolute static inlet pressure 

head corresponding to saturation ( o r  vapor) pressure 

of the test  liquid at the tunnel (pump) inlet temperature, 
T 

0 
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X 
h 

h" 

V 
Ah 

H 

AH 
C 

nc AH 

k 

c,  min K 

- 
- - 

c,  min K 

s ta t ic  head corresponding to absolute static p r e s s u r e ,  

measu red  on the stationary-body o r  on the suction 

surface of the pump inlet blade at  distance x,  down- 

s t r e a m  of the minimum p r e s s u r e  point--for non- 

cavitating flow 

stat ic  head corresponding to the minimum absolute 

s ta t ic  p r e s s u r e  on the leading edge of the stationary- 

body or  on the suction surface of the pump inlet blade, 

computed f rom expression for  C 

s ta t ic  head depression attributable to the vaporiza- 

tion of liquid that is  required to sustain a developed 

V 

P 

r T 

cavity 1 z h  - h 
V c, min 

total  head, corresponds to total p r e s s u r e  

total head r i s e  ac ross  cavitating pump impel le r  o r  

inducer 

total head r i s e  a c r o s s  noncavitating pump impel le r  

o r  inducer 

thermal  conductivity of liquid, evaluated at  tunnel 

inlet o r  a t  pump inlet (P  and T ) 
0 0 

developed cavitation pa rame te r ,  based on minimum 

stat ic  cavity p r e s s u r e  

[.(h 0 - h  c, min 
L 

ar i thmetic  mean value of K for a complete 

se t  of data points for  a par t icu lar  hydrodynamic 

body-fluid combination o r  for  a par t icular  pump 

at mean values of J I ' ;  a lso  used f o r  ar i thmetic  mean 

value of K at specific ope rating conditions for  

a par t icu lar  pump 

c,  min 

c ,  min 
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value o f K  i n  an infinite flow field c , min 
[zFC(K c, mln .)] 

developed cavitation pa rame te r ,  based on inlet  

blade tip relative velocity 

(.c,min)w - - 

c, min c, min 

V 
K conventional developed cavitation pa rame te r  

3 

length of cavities developed on s tationary-bodies 

o r  on pump blades, used interchangeably with x 

- MPE - ar i thmetic  mean percent e r r o r  in  predicted values 

of NPSH--see tables 4. 5 through 4.7 

liquid phase velocity ra t io  - [ = v /vt - - 
0 

1 + B ( p  / P  ) ( a t / a  c v  
a 1 + B ( P v / P c )  c 
re ference  [21] 

- MTWO - 

number of inlet  (main) blades on impel le r  o r  

inducer 

n 

n 
PS 

number of p r imary  spli t ter  vanes on impel ler  

number of secondary spl i t ter  vanes on impel le r  n 
s s  

N angular velocity of pump impel ler  o r  inducer 

net positive suction head [e h + ( V  / 2 g  )-h 3 

Pecle t  number [s V o t / a ]  

per iphera l  extent of blades, degrees  of a r c  

tunnel o r  pump absolute static inlet p r e s s u r e  

2 
o o c v  NPSH 

P e  

PE 

0 
P 
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f l  
S 

f 2  
S 

v2 S 

nc S 

C 
S 

!a 

b 
t 

0 
T 

U 
t 

P rand t l  number  E C p/k] [ P9.e 
volumetr ic  flow ra te  (capacity) of pump 

d iameter  Reynolds 

length Reynolds 

per iphera l  length along the contour of a s ta t ionary-  

body as measu red  f r o m  the leading edge of the 

contour to the minimum p r e s s u r e  point on the 

contour 

specific entropy of sa tura ted  liquid a t  T 

specific entropy of sab i ra ted  liquid a t  minimum 

cavity p r e s su r e  ( tempe r atu r e  ) 

0 

specific entropy of saturated vapor a t  minimum 

cavity p r e s s u r e  ( t empera tu re )  

noncavitating suction specific speed of pump 

cavitating suction specific speed of pump 

the minimum distance (with allowance for  blade 

thickness)  between impel le r  o r  inducer  blades a s  

measu red  between l ines  constructed tangent to the 

blade p r e s s u r e  sur faces  a t  the blade t ips,  s e e  f igures  

5 . 5  and 5 . 6  [= ( n D  /n) s in  p - t ] 

thickness of a l l  blades on the impe l l e r s :  t ip 

thickness  fo r  inducer  blades 

t b 

bu lks t ream stat ic  t empera tu re  of liquid enter ing the 

tunnel o r  pump 

pump inlet  blade tip speed 
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c V 
I 

0 
V 

VHO 

v* c 

i u' V 

We c 

t W 

X 

Greek 

CY 

Y 

1 

charac te r i s t ic  liquid velocity component, no rma l  

to cavity liquid-vapor interface,  s ee  reference [21]  

- - 

- - bulkstream velocity of t e s t  liquid a t  inlet to tunnel 

o r  pump 

- - experimental  developed cavity data for  the combined 

venturi ,  hydrofoil, and ogive stationary-bodies 

- - volume of liquid associated with the sustenance of 

a developed cavity 

- - volume of vapor associated with the sustenance of a 

developed cavity 

2 
- - Weber number [ z p V &/o] 

0 0  

- - to pump inlet blade a t  tip 

- - axial distance measured f r o m  minimum p r e s s u r e  

point on stationary-bodies; a lso used to measu re  

cavity length along impeller and inducer blade 

chords 

- - t he rma l  diffusivity of liquid, evaluated at  tunnel 

(pump) inlet  (P and T ) 

inlet (main)  blade angle a t  t ip--measured f r o m  

circumferent ia l  direction, see  table 4.4 and figure 5 . 3  

0 0 

- - 

- - 

- - 1  

blade leading edge fairing angle [ E B/2] 

tan @ - - 
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V 
6 

e 
2 

u 

v 

pV 

Ji 

Sub s c rip t s 

0 

ref 

- - thickness of the developed vaporous cavity 

- - angle between blade suction surface and w t 

- - angle between blade p r e s s u r e  surface and w t 

- - absolute viscosity of liquid, evaluated a t  tunnel 

(pump) inlet (P and T ) 
0 0 

- - kinematic viscosity of liquid, evaluated a t  tunnel 

(pump) inlet [ E p / p  ] 
0 

- - density of liquid, evaluated a t  min imum cavity 

p r e s s u r e  

- - density of liquid, evaluated at tunnel (pump) inlet 
(Po and T ) 

0 
- - density of vapor,  evaluated a t  min imum cavity 

p r e s s u r e  

- - surface tension of liquid in contact with i t s  vapor,  

evaluated a t  tunnel (pump) inlet  (P and T ) 
0 0 

- - flow coefficient [z.v /u J 
o t  

2 
C t 

= head r i s e  coefficient [- g AH/u ] 
- - ra t io  of cavitating to noncavitating head r i s e  

coefficients [- A H  /AH ] 
C nc 

- - denotes tunnel (pump) inlet location 

- - reference run (data point), o r  t e s t  conditions, to 

which a computation i s  being referenced when 

attempting to cor re la te  pump cavitation performance 

v iaeqs(4-14)or  eqs(4-16)  and when using 

eq (4-1) o r  eq ( 4 - 2 )  

8 2  



Super s c rip t s 

E l  - - 

E3 

E4 

E5 

E6 

P 

z 

exponent on thermal  diffusivity ra t io  in  eq (4-1) 

and eq (4-2)  

exponent on tunnel inlet velocity ra t io  in eq (4-1) 

and a l so  used a s  an exponent on the MTWO rat io  

in  eq (4-2) 

exponent on cavity length rat io  in  eq (4-1)  and 

eq (4-2) 

exponent on kinematic viscosity ra t io  in eq (4-1) 

and eq (4-2) 

exponent on surface tension ratio in  eq (4-1)  and 

eq (4-2) 

exponent on charac te r i s t ic  dimension rat io  in  

eq (4-1) and eq (4-2) 

exponent in  algebraic expression fo r  cavity shape 

( 6  V = C o 2 )  

exponent in  algebraic expression,  defined by 

eqs  (5-10) 
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APPENDIX A: Examples of NPSH Prediction Calculations t 
Examples of the calculational procedure for predicting NPSH 

For  requirements of cavitating impellers and inducers a r e  given. 

convenience, eqs (4-14) and (4-16) a re  repeated below: 
9 

(NPSH + Ah V ) 
- - 

(NPSH + Ah ) v ref (1 + K  

(4-14) 

(NPSH + Ah ) 
V - - 

(I+ K 

(NPSH + Ah ) 
( l +  Kc, min) ref v ref 

- B = ( MTWlf)'* 51 (( 4/Dt )'* 28 (DDt )Oo7' 
'lDt) ref t, ref MTWO 

Bref 

(4-16) 

Lacking cavity length data, the t / D  ratios in  eqs (4-14) and (4-16) a re  

taken as unity--see discussion in section 4 . 6 .  
t 

The definitions of BFLASH and MTWO are  also given as 

s - s  
f l  f2 

7 B = BFLASH =( t) s v2 - s  f l  

t Numerical examples in this Appendix were supplied from the 

computer computations performed by W i l l i a m  R. Parrish.  
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ComDutational F rocedure  

Predicting pump cavitation performance using eqs  (4-14) and 

(4-16) requires  two steps. 

calculate reference pa rame te r s .  

at different conditions as long as $ '  i s  held constant. 

F i r s t ,  f r o m  existing pump cavitation data,  

Then, it is simple to pred ic t  a NPSH 

Reference P a r a m e t e r  Calculation: F o r  example,  say  that we 

want to use  eq (4-1 6) to pred ic t  NPSH. 

some function of @ and 6' f o r  each impel le r  and inducer. Two exper i -  

mental  data points a r e  required to calculate re ference  pa rame te r s - - a t  

least one of these data points mus t  exhibit measurable  'head depress ion ' ,  

Ah . 
fluid for m o r e  than one tes t  point. 

data points at  the same  values of @ and $'--under these conditions 

eqs (4-16) simplify to 

It is  assumed that K i s  
cy  min 

This c r i te r ion  virtually excludes the use  of cold water  as test 
V 

F o r  each pump we may choose two 

V 
NPSH + Ah 

2 

- - 
(NPSH + Ah ) (k) v ref 

and, 

(A- 3a) 

(A- 3b) 

There a r e  sixunknowns: Ah , (Ah ) , B ,  B MTWO, and MTWO 
V v ref ref '  ref' 

The relationships between Ah 

nonlinear and vary  with fluid, fluid inlet  t empera ture  and inlet  velocity. 

However, these nonlinear relationships can be l inear ly  interpolated 

and B, and between B and MTWO a r e  
V 

over sufficiently shor t  increments  of B. 
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The computational procedure  is a s  follows: 

1 )  Guess  a value of (Ah ) and determine a corresponding v ref 
value of B 

Equation (A-1) may be used to compute B 

a temperature-entropy diagram for  the appropriate  fluid. 

f r o m  an appropriate table o r  graph [ 231. 
ref 

direct ly  using 
ref 

2)  Calculate Ah f r o m  eq (A-3a) .  

3) 
V 

By i terat ion,  compute the cor rec t  values of B and MTWO 

satisfying eq ( A -  3b) .  

Interpolate [ 2 3 ]  the value of Ah 

found in  s tep 3 .  

Compare the values of Ah 

If they a r e  equal the c o r r e c t  value of (Ah ) 

4)  corresponding to the B 
V 

5) calculated in s teps  2 and 4 .  

has  been 
V 

t 
v ref 

I chosen, otherwise choose another value of (Ah ) and 
v ref r 

r e tu rn  to  s tep 1.  

The difference in the calculated values of Ah in s teps  2 and 4 
V 

is near ly  l inear  in  (Ah ) Therefore,  l inear  extrapolation o r  

interpolation to  z e r o  difference i s  a good guide to choosing the next 

value of (Ah ) Similarly,  in  step 3 the difference between the left 

and r ight  s ides  of eq (A-3b) vs  B i s  nearly l inear ;  therefore ,  improved 

guesses  for B can be made in  the same way a s  descr ibed for (Ah ) 

With re ference  p a r a m e t e r s  

v re f '  

v re f '  

v r e f '  
Predict ing Pump Per formance:  

known, predicting pump cavitation performance for another fluid, 

fluid tempera ture ,  rotative speed, flow condition, o r  pump geometry 

a t  the s a m e  value of 1' is  s t ra ight-forward.  B i s  computed f rom the 

second equation of (4- 16)  by i terat ion a s  descr ibed in s tep 3 .  

corresponding value of 

st i tuted into the f i r s t  equation of ( 4 - 1 6 ) .  

The 

is  then determined a s  i n  s tep 4, and sub- 

Assuming that K and 
V 

1 

c ,  min 
I ) a r e  known, the f i r s t  equation of (4-16) i s  then used to  c,  min ref ( K  
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solve for the des i red  (predicted) NPSH. 

above procedure is  included at the end of this appendix. 

An example i l lustrating the 

Data Reduction: Determining which equation se t  works best  

involves the following procedure:  

1) The pump data were divided into se t s  by holding pump 

geometry,  speed (inducer data only), q3 , and 4 '  constant. 

The head depressions for  two data points a r e  then calculated 

using the procedure previously outlined in  this appendix. 

Using these calculated values of head depression,  the 

corresponding values of K and S a r e  calculated f rom their  

definitions. 

of data points within the data set. 

c y  min  C 

Repeat this procedure for all possible pa i r s  

Arithmetically average 

the calculated values of K and S and assign the 
c y  min C 

average values to each data point in the data set. 

vs  qj and/or  S 

Sequentially u s e  al l  possible combinations of p a i r s  of data  

points to determine reference data fo r  each pump geometry 

and value of 4' .  
predict  NPSH f o r  all o ther  data  points for  all other pump 

geometr ies  a t  the chosen value of g ' .  

average e r r o r  in  predicting NPSH for each geometry and 

K c,  m i n  
vs @ have thus been determined. 

C 

2) 

Use each pa i r  of re ference  data points to 

Finally,  tabulate the 

4'. 

This procedure i s  applied to each s e t  of predictive equations to 

find the se t  which gives the lowest mean percent  e r r o r  (MPE)  in  

predicted NPSH f o r  each pump geometry,  e. g. , the equation se t  giving 

the lowest MPE when predicting NPSH values f o r  the impe l l e r s  and 

inducer B using inducer A for reference data. 
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Numerical Example 

As an example of how to use  the MTWO equations, we will predict  

the required NPSH for  inducer B using reference data  f rom impel ler  A .  

The equations a r e  based on a constant $ ’  and the inducer data 

a r e  a t  $’  = 0. 7 - - s o  choose data points 7 and 8 (table 4. 3) to obtain 

reference pa rame te r s  for  predictive purposes. 

Calculation of Reference Data:  To  use  the MTWO equations, 

reference values for  B, MTWO, and Ah a r e  required. 
If K c, min is  V 

known (Ah ) can be calculated f r o m  the definition of K ; however, 
v ref c, min 

it i s  assumed that K i s  unknown for this p a r t  of the example. By c, min  
choosing data  points 7 and 8 ( $  = constant) we may  use  eqs (A-3) to 

, 
1 evaluate the reference parameters .  These simplifications do not a l ter  

the method of solution because the remaining t e r m s  in  eqs (4-16) produce 

rat ios  of unity under the prescr ibed  conditions. By calling data point 7 

the reference point, eq (A-3a) becomes 

t 

2 
= 1.2188.  (A-4) 

29.6 + Ah V 
27 600 

(21.3 + Ahv) re f  = ( 2 5  0 0 0 )  

As a first guess ,  assume (Ah ) = 30. 0 m of liquid hydrogen. 

This value will be compared with Ah V 

v ref 

F r o m  (A-4) Ah i s  3 2 , 9 2  m. 

found f r o m  the B-factor equation--the B for  the t e s t  point mus t  be 

found f r o m  eq (A-3b). Calculate B for the reference data point 

using eq (A-1). 

B known, MTWO a s  calculated f rom eq (A-2) i s  0.3817, 

V 

F o r  (Ahv)ref = 30. 0 m the BFLASH is 0. 8185. With 

Then eq (A-3b) 
1 can be writ ten a s  

0, 51 
B MTWO 

0, 8185 = ( 0. 3817) (A-5) 
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In  principle, eq (A-5) can be uniquely solved using the definition 

of MTWO; however, it is e a s i e r  to guess  a value of B, calculate MTWO 

and tes t  this value of MTWO in  eq (A-5). As a f i r s t  guess ,  assume 

B = 0. 83--the corresponding value of MTWO i s  0. 426. 

value into eq (A-5), B = 0. 8185 (;: ;if;) O *  

assumed and calculated values,  the init ial  guess of B was too small. 

Now guess B = 0. 942, then MTWO = 0.4578 and B = 0. 8185 

Putting this 

= 0, 865. Comparing the 

= 0. 898. 

This corresponds to MTWO = 0.4392 and B = 0. 8185 

= 0. 879; this calculated value of B is close enough to the assumed value 

of 0. 878. 

This t ime the assumed value is  too la rge ;  t r y  B = '0. 878 .- (;: 4;;) O* 

This value of B implies a head depression,  via eq (A-l) ,of  31. 76 m 

Therefore ,  which i s  sma l l e r  than the 32. 92  m calculated f r o m  eq (A-4). 

the assumed value of (Ah ) was too high; now t r y  (Ah ) = 20. 0 m. 

F r o m  eq (A-4) Ah 

0. 5035 and (MTWO)ref i s  0. 2893. 

cedure descr ibed above, B-factor for  the t e s t  point i s  0. 5405, MTWO is 

0. 3325 and Ah 

f r o m  eq (A-1) is l a rge r  than the value calculated f r o m  eq (A-4). 

v ref v ref 
i s  20. 815 . B-factor for the reference point is  

V 

Repeating the same  i terat ive pro-  

i s  21. 271  m. This t ime the head depression calculated 
V 

The next guess  of Ah i s  found, by l inear ly  interpolating to 

F r o m  
v ref 

ze ro  difference in calculated head depression,  to be 22. 68 m. 

eq (A-4) Ah 

0. 5830 and (MTWO) ref i s  0. 3140. 

a B-factor for  the tes t  point of.0. 6260 which corresponds to an MTWO 

of 0. 3611 and Ah of 24. 11 m. Therefore ,  the co r rec t  value of (Ah ) 

is  22. 68 m, (B) = 0. 5830 and (MTWO) = 0. 3140. 

i s  24. 00 m. The B-factor for  the re ference  point i s  
V 

Solving eq (A-3b) by i terat ion gives 

V v ref 

ref ref 
To obtain reference values for  eqs  (4-14), the procedure i s  the 

same as above except that no i terat ive procedure is  required to  cal-  

culate the tes t  point B-factor. 

96 



Predict ion of NPSH at Different Rotative Speed, Temperature ,  

Flow Coefficient, and Pump Geometry: Using the reference data,  

predict  the required NPSH for  inducer data point 54. It i s  assumed 

is  known (o r  can be estimated) for the reference point and 

Referring to table 4. 3,eqs (4-16) become, for  this problem, 
c, min that K 

t e s t  point. 

NPSH + Ah 
- v ,  

(21. 3 + 22. 68) 
- 

0. 110 (30000)12, 65 

0. 225  (25000) 6. 78 

o r  

NPSH + Ah = 88.58 m; 
V 

(A-6a) 

0. 51 0. 71 
B ‘MTWO 

0. 5830 = ( O .  3140) (%) ’ 

o r  

(A- 6b) 0. 51 
B = 1, 6389 (MTWO) 

F i r s t  eq  (A-6b) must  be solved by i teration a s  previously described. 

Guess B to be 1. 31; this requires  that MTWO = 0. 7229 for  this tes t  point. 

Then B = 1. 6389 (. 7229) 

is  too low. 

B = 1. 6389 (0. 7708) 

value i s  slightly too high. 

= 1. 389, which means the guessed value 
0. 51 

T r y  B = 1.458, which gives an MTWO = 0. 7708 and 

= 1.435; this value implies  that the guessed 

Now t r y  B z 1. 424 and correspondingly 

0. 51 

0. 51 
MTWO = 0. 7597, then B = 1.6389 (0.7597) = 1. 424; this i s  the co r rec t  

value and corresponds to a Ah 

= 88. 58 - 21. 15 = 67. 43 m. 

is  67. 0 m. 

of 21. 15 m. F r o m  eq (A-6a) NPSH 
V 

F r o m  table 4.3 the experimental  NPSH 

Again, if eqs (4-14) a r e  used, the procedure i s  identical to the 

one just  descr ibed except that no i terative scheme is  required to 

calculate the B-factor. 
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The procedure descr ibed and i l lustrated here in  may  be applied 

to  any pump geometry,  fluid, fluid tempera ture ,  rotative speed, flow 

conditions, etc. , a s  long as $ '  is held constant and appropriate values 

of K 

a r e  held constant, K ( o r  S ) may be assumed constant and 

eliminated f r o m  the correlat ive-  predictive expressions,  i. e. , in  

eqs  (4-14) and (4-16). 

( o r  S ) can be estimated. If pump geometry,  $ ' ,  and I$ 
c, min C 

c, min C 
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